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Abstract—Spatial Crowdsourcing (SC) has been proved as an
effective paradigm for data acquisition in urban environments.
Apart from using human participant, with the rapid development
of unmanned vehicles (UVs) technologies, unmanned aerial or
ground vehicles (UAVs, UGVs) are equipped with various high-
precision sensors, enabling them to become new types of data
collectors. However, UGVs’ operational range is constrained by
the road network, and UAVs are limited by power supply, it is
thus natural to use UGVs and UAVs together as a coalition,
and more precisely, UGVs behave as the UAV carriers for
range extensions to achieve complicated air-ground SC tasks.
In this paper, we propose a novel communication-based multi-
agent deep reinforcement learning method called “GARL”, which
consists of a multi-center attention-based graph convolutional
network (GCN) to accurately extract UGV specific features
from UGV stop network called “MC-GCN”, and a novel GNN-
based communication mechanism called “E-Comm” to make
the cooperation among UGVs adaptive to constant changing of
geometric shapes formed by UGVs. Extensive simulation results
on two campuses of KAIST and UCLA campuses show that
GARL consistently outperforms eight other baselines in terms of
overall efficiency.

Index Terms—Spatial crowdsourcing, multi-agent reinforce-
ment learning, graph neural network

I. INTRODUCTION

Spatial crowdsourcing (SC [1]-[3]) is an attractive paradigm
that assigns a particular spatial-temporal task to a collective
group of workers (normally human participants), which has
many applications in ride hailing services [4], road condition
monitoring [5], [6], etc. To achieve higher flexibility and
lower latency, instead of using human participants, unmanned
vehicles (UVs) including unmanned aerial vehicles (UAVs)
and unmanned ground vehicles (UGVs) have shown great
potentials to complete SC tasks, since they are equipped with
high-speed data receivers like WiFi/5G to enable sensory data
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Fig. 1. Overall scenario for air-ground SC with UAV carriers.

collection and sharing in urban environment. However, since
UGVs cannot reach high-up areas and UAVs are usually
associated with inadequate operational range due to limited
power supply, it is challenging to simply utilize one type
of UVs only. Therefore, it is promising to use UGVs as
“carriers” and allow UAVs to land on top of them as a coalition
to achieve data collection services, which helps overcome
their individual constrains and thus improving overall task
efficiency. As shown in Fig. I, several UGV stops are located
along the roads, and UAVs are loaded. UGVs also provide
battery charging services for UAVs, decide which stop to go
next and when to release the UAVs to fly over the workzone
to collect data from a variety of deployed sensors like CCTV
cameras and gas alarms. To the best of our knowledge, we are
one of the first to consider air-ground SC with UAV carriers.



In an air-ground SC task with UAV carriers, key challenges
are, first, rapid and unpredictable changes of the sensory
data to be collected may cause difficulties for UAVs-UGV
coalitions to have an overall understanding on the entire
environment conditions in real-time. Along the direction of
spatial modeling, existing research on graph neural networks
(GNN) related methods [7], [8] can capture the features of
UGV stops as graph nodes, which is constructed using road
connectivity. However, in practice, the entire workzone can be
really large, even if not, it is also impossible for one single
UGV to know the entire graph since it has partial observations
of the environment, which may in turn be resulted in overlap-
ping/missed visits to certain sensors. Therefore, it is natural
to use communication-based multi-agent deep reinforcement
learning (MADRL) as the start point of the design to control
UGVs/UAVs, and along this direction, many efforts have been
paid. To enhance communication among agents, GAM [9]
and IC3Net [10] improved the performance in cooperative
scenarios by designing specific communication mechanism.
However, information sharing among UGVs may be signif-
icantly influenced by practical underlying network conditions,
such as communications infrastructures, network workload
and obstacles to prevent signal propagation. CommNet [11]
and ToM2C [12] cannot adapt to the constant changing of
geometric shapes formed by UGVs, such as translation and
rotation. However this kind of changes is important when
the data distribution is not uniform among sensors. Hence,
existing solutions lack an efficient communication mechanism
for UAVs-UGV trajectory planning, which can efficiently ex-
change messages among UGVs, and be sensitive to geometric
changes simultaneously.

To this end, in this paper, we propose a novel MADRL
model called “GARL”, which extracts UGV specific features
from the stop network based on an attention module, and
supports efficient geometry-aware message exchange among
UGVs, using IPPO [13] as the start point of the design. Our
contribution is three-fold:

o We propose a novel multi-center attention-based graph
convolutional network called “MC-GCN” to extract UGV
specific features of stop network from their own obser-
vations of the environment.

o« We propose a geometry-aware communication mecha-
nism called “E-Comm”, which well adapts to constant
changing of geometric shapes formed by UGVs including
transformation and rotation.

o« We perform extensive experiments on two campuses:
KAIST (South Korea) and UCLA (USA). We find the
most appropriate hyperparameters, and conduct abla-
tion study, visualize the UGV/UAV trajectory, and show
performance comparisons with eight baselines. Results
confirm that “GARL” outperforms all others in term of
overall efficiency.

The remainder of this paper is organized as follows. First,
we review related activities in Section II. Then, we present
the system model in Section III and give problem definition

TABLE I
IMPORTANT NOTATIONS USED IN THE PAPER.

Notation Explanation

t,T Time index and task duration.

U,u,U UGV set, index and total number of UGVs.
V,v,V UAV set, index and total number of UAVs.

\%4 The number of UAVs on each UGV.
AdVP Data collected by a UAV v from sensor p
t during timeslot [¢t, ¢ + 1).

av Remaining amount of data of sensor p at t.
Efficiency, data collection ratio, fairness,

A6, B cooperation factor and energy consumption ratio.
a:%’ UGV stop vector of node b at ¢.

xy UGV u’s position at t.

St State at .

oy, o} Observation of UGV w and UAV v at t.

ayl,ay Action of UGV u and UAV v at t.

and formulation in Section IV. Next, we present our proposed
method GARL in Section V. Experimental results are provided
in Section VI and we conclude the paper in Section VII. We
list the important notations in Table I.

II. RELATED WORK AND PRELIMINARIES
A. Spatial Crowdsourcing (SC)

With the development of high-speed mobile Internet and
the increasing popularity of smart devices, people can easily
get access to online services and engage in spatial-temporal
cooperative tasks. A new framework, namely spatial crowd-
sourcing [14] is proposed to support these real-world activities.
In SC, many existing solutions are proposed. For example,
Ni et al. in [15] considered task dependencies, where one
task can be assigned only if its dependent tasks have been
dispatched. Based on this constraint, they proposed greedy and
game-theoretic approaches. Cheng et al. in [16] considered
worker cooperations, and they proposed a Cross Online Match-
ing algorithm (COM), making a platform to borrow available
workers from other platforms for finishing requests from users
[2]. Besides, they also proposed two algorithms, including
deterministic cross online matching and randomized cross
online matching for COM. Given that many methods only
focus on static offline scenarios, Zhao et al. in [17] predicted
the trajectories of workers and distributions of future tasks in
their proposed solutions. They paid attention to both current
and future workers or tasks that enter the system dynamically.
In the consideration of data privacy issues, To ef al. in
[18] proposed a Geo-Indistinguishable privacy mechanism to
protect the location privacy of both workers and tasks, and
they further applied a probability-based algorithm to assign
tasks to workers in an online manner. In order to minimize
maximum task assignment delay, Chen ef al. in [1] proposed
an efficient space embedding-based online random algorithm
which gets results with at most O(logn) expected times of
delay compared with other baselines in their paper.

In SC with UVs, Zhou et al. investigated joint optimiza-
tion of route planning and task assignment problem for the
sake of energy efficiency in UAV-aided SC systems [19].



Liu et al. developed a distributed DRL-based framework to
achieve energy-efficient multi-UAV navigation, ensuring long-
term communication coverage [20]. Wang et al. proposed FD-
MAPPO (Cubic Map) [21] to enable humans to work collab-
oratively with UAVs to achieve data collection tasks based
on a fully decentralized MADRL framework. IADRL [22]
considered to use a coalition of a UGV and a UAV to
complete certain tasks by combining imitation learning with
DRL. However, the tight binding between one single UGV
and one UAV is not optimal.

B. Graph Neural Network (GNN)

GNN methods operate on graph structured data, learning
graph representation through node and edge features. Message
passing scheme is the key part of these models, determining
how a node aggregates information from their neighborhood in
a graph. Graph convolutional networks (GCNs [7]) are the de
facto method for graph processing and many related methods
have been proposed to extract locally connected features from
graphs [23], [24], and widely used in many applications, such
as social networks [25], molecule structure modeling [26] and
traffic prediction [27]. GCN is built by interleaving vertex-wise
operations, implemented via a single fully-connected layer,
with a communication step exploiting the Laplacian matrix of
the graph. In practice, a single GCN layer provides a weighted
combination of information across neighbors, representing a
localized 1-hop exchange of information. A generic GCN layer

can be described as:
x (41 — o(L X(Z)W),

L=D:AD =,

(1)
(1b)

where A = A + Iy is the adjacent matrix with self-
connection; L is the Laplace matrix and D is a diagonal matrix
where D;; = Z A”, X O is the node feature matrix on [-th
GCN layer and W is a learnable weight matrix.

Message passing neural network (MPNN) framework [28]
concludes the message passing schemes of existing neural
network models for graph structured data. It operates in
message passing phase and readout phase, defined as:

mg;l+1 = Z M(l ,U a qs)ve'uu) (2a)
weN (v)
Xq()l+1) —_ U‘(l)()(’L(]l)’,’,n’g)l-‘y-l))7 (Zb)

where M is the message a%gregation function and U is the
vertex update function; mv is the message aggregated from
the neighbors of node v; X,(,l), X&l) is the feature of node v
and u on the [-th layer and e,, is the feature vector of the
edge between node v and w.

C. Multi-Agent Deep Reinforcement Learning (MADRL)

In cooperative multi-agent tasks, a decentralized
partially observable Markov decision process (Dec-
POMDP) [29] is used to describe partially observable
environment. A Dec-POMDP is formally defined as a tuple
U,S, A, Pr,R,0,p,po,7), where U ,S, A and O are the

set of agents, states, actions and observations. The initial
state sg is drawn from distribution pg. During timeslot
[t,t + 1), each agent u € U obtains its observation o} € O,
and then chooses its action aj based on local observation
following its policy. After all agents taking the joint actions
{a®}V_,, the next state s;.; is drawn from transition
probability kernel Pr(s;i1|s:, {a¥}V_,). Then, each agent
u receives a individual reward 7¥ = R(s¢, {a?}V_,,u) from
the environment. The aim is to maximize the discounted
accumulative reward J(0) = E[}.;° ' Zgzl ri'], where
v € 10,1) is the discount factor.

Centralized and decentralized learning are two general
frameworks in MADRL algorithms. To mitigate the instability
in decentralized methods, centralized training and decentral-
ized execution (CTDE) framework is applied [30]-[32]. How-
ever, these models still lack of ability in message exchanges
among agents, especially in partially observable and stochastic
environment. Many previous works have specially designed
communication mechanisms. For example, TarMAC [33] used
attention mechanism to learn what to send to other agents and
whom to communicate with. ToM2C [12] was able to predict
other agents’ observation and intention to achieve efficient
cooperation.

Both IPPO [13] and MAPPO [34] show competitive per-
formance in cooperative tasks. IPPO learns independently in a
fully decentralized manner while MAPPO estimates decentral-
ized actor and centralized critic based on global state. Despite
of the different frameworks, IPPO and MAPPO have similar
objective functions in general, which are defined as:

LCLIP+VF+H(0U,) =T, [LtCLIP(Hu) _ Cle/F(au)—l— Ga)
a
CZH(TFGU)]a
LtCLIP(au) _ min( Tou (atu|htu) A?,
Wegld(at |hi)
rou (al|h) (30)
clip ouitu —e€1,1+e€1)AY),
o (a0t o) 40)
LF(0") = max((Veu (h{') — R}')?, (clip(Vou (R,
Vou (hi) — €2, Vou (hi') + €2) — R}')?,
(3¢)

where H (mgu) denotes the entropy of policy mgu; c1, ¢a, €
and e are constants; hy is the feature extracted from ob-
servation oy'; A} is calculated via the Generalized Advantage
Estimation (GAE) approach [35]; R? is the discounted reward.

III. SYSTEM MODEL

In our considered air-ground SC tasks with UAV carriers,
let d = {1,...,u,...,U} and V = {1,...,v,...,V} denote
UGVs and UAVs in the target workzone, respectively. Each
UAV v is associated with limited initial fully-charged battery
supply eg. UAVs which are loaded on a UGV u are denoted
as V* £ {v|v € V,v is carried by u}, where UGV u can
replenish the battery of carried UAVs in V" if needed. Let
V' denote the number of UAVs carried by each UGV. In a
task, UGVs and UAVs cooperate to collect data from sensors



P L {1,...,p, ..., P}, which distribute around buildings in the
target workzone. Initially, a sensor p contains d5, Vp € P unit
data to be collected by UAVs. Due to the limitation of the flight
height and prohibited areas of UAVs by regional regulations
or rules, for ease of exposition, we regard all the buildings as
obstacles that UAVs cannot fly over. UGVs travel along the
stop network in the target workzone, which can be abstracted
into a graph called “stop graph” denoted as G = {B,&}.
Operations to construct a UGV stop graph are as follows:
first, virtual UGV stop nodes B £ {1,....b, ..., B} are set at
regular intervals along the roads, and then the edges £ in G
are connected according to the connectivity of these virtual
nodes in practice.

Without loss of generality, we consider a time-slotted sys-
tem, dividing the task duration into 7' timeslots. In each
timeslot [t, ¢+ 1), each UGV u first decides whether to release
UAVs in V* to collect data in the surrounding area or not.
If a UGV w decides to do so, it flies the UAVs and then
wait in its position x} = (z},y;) for a specified period
t"s: otherwise, a UGV u chooses the next stop and moves
over. During each timeslot, a UGV u moves a certain distance
of < 6% .., and each released UAV v moves a certain distance

max?
0 = /(@1 —29)? + (W1 — U)? < Opax at any angle,
where §}% .., 0.« are the maximum distance a UGV/UAV can
travel given the fixed duration of a timeslot, and &} = (z, y})
is the position of a UAV v at the beginning of this timeslot.
Each UAV v will consume nd; unit energy for movement,
where 7 is a weight. The released UAVs will return to the
designated UGV as UAV carrier after ¢ timeslots and fully
charged to its initial energy level €Y, or before ' timeslots if

it runs out of battery.

At each timeslot [¢,t+1), if a sensor p is within the sensing
range of a UAV v, the latter collects Ad;"* = min(AdY, d?)
unit data, where AdY denotes the maximum amount of data
each UAV v can collect from a sensor during each timeslot,
and d} denotes the remaining amount of data at sensor p at ¢.

IV. PROBLEM DEFINITION AND FORMULATION

A. Problem Definition

In air-ground collaborative SC tasks, UGVs and UAVs
cooperate to collect data from deployed sensors within a
sensing range, to achieve the following goals. First is to
maximize the total amount of collected data in the workzone,
defined as data collection ratio :

R

p=1 ;
2, do

“4)

where Zp dl represents the initial data to be collected of
all sensors in the target workzone, and ZP dz} denotes the
remaining data which UAVs fail to collect at the end.
Second is to try to collect data as evenly as possible among
all sensors, defined as fairness ¢ by by using Jain’s fairness

index [36] to measure the geographically exploration range of
UGVs and UAVs, as:

2
(52, (@t — ) /)
= 2 B

Py, ((do —dy) /dg)” + €
where € is a small constant. Higher fairness indicates higher
geographical coverage.

Third is to maximize the degree of UAVs-UGV air-ground
collaboration since it is highly expected that UAVs can suc-
cessfully collect sensory data every time it is released by its
carrier UGV, defined as cooperation factor (:

) #f}ff_rls
(= 27, (6)
Z #rls
where #1 denotes the total number of UAV v is released in
the task duration, #¢™-" counts the number of times a UAV
v is released and actually collect data during this flight.

Fourth is to minimize the energy consumption of all UAVs

due to constant movement, defined as energy consumption

§

(&)

ratio 3:
61)
IS DL L ™
Zv €o + Eut Aet
where Zv’t Ae} denotes the overall charged energy for all
UAVs.

Our goal is to maximize data collection ratio v, fairness
&, cooperation factor ¢ simultaneously, while minimizing
energy consumption ratio 3, which is achieved by integrating
these four metrics into one single performance metric called
“efficiency” A:

Nty

8
3 ®)

B. Problem Formulation

The state s; € S of an air-ground SC task with UAV carriers
contains four aspects. First is the information about the UGV
stops and buildings as obstacles in the target workzone. Here
we use a vector x? to describe a UGV stop node b in stop
graph G, as:

xl = [z y°, d0) ", Vb € B, )

where (z°,1%) denotes the position of stop node b, and d?
represents the data quantity that can be collected by UAVs
released by UGV in the position of stop node b at ¢. Second
is the current position x}* = (2}, y}*) of each UGV w. Third is
the current position x} = (z7,y;) of each UAV v. Finally is
the position x, = (x,,y,) and the amount of remaining data
d¥ to be collected from each sensor p.

Each UGV wu has its own observation o}, which contains
two tensors. The first tensor XtB " records the observation of
stop nodes, as:

XPu = (e ab el (10a)
0 = [,y drT (10b)
where x? is a masked vector of x¥. Specifically, given a stop
node b that has not been approached by the UAVs on UGV u



until ¢, a constant is used to mask the value d’t’ in vector w?; and
for a previously visited stop node b, the newest information
d}, about the stop node b that approached at ¢’ is used to mask
the value d? in vector 2%. The second tensor XV records the
observation of UGVs, denoted as:

Xtu = [m%,...,azf,...,wﬂi (11a)
oy =[x}y, (11b)

where x} denotes the position of a UGV wu at ¢t. The obser-
vation of a UAV v is then represented by:

of =sy(af —l:ay +1Ly — 1y +1), (12

where (x},y}) is the position of a UAV v, and [ is a constant
that controls the range of local observation.

The action a} of a UGV w consists of two parts: ay =
(w, biar), where in each timeslot a UGV wu first decides
whether to release the carried UAVs or not (denoted as w),
and if yes, let b, be the stop node to reach next. A UAV
v’s action a? € R? specifies its movement behavior in a 2D
plate.

The reward function for a UGV w is as follows:

w = False
. (13)
otherwise

0

Ty = 4™ ,
{ t'=t (ZUEV“ Adf’)
If a UGV wu decides not to release the carried UAVs and then
take further movement to the next stop, it receives zero reward;
otherwise, the data collected by the carried UAVs during [t, t+
™) will be returned as reward. The reward function for a UAV

v is defined as ¥ = /" 4+ r?~, where:

riT = clip (&6” { ,0, 63)

c;%f@m®2
Py, (&) [d5) +

Here, r;'~ denotes the penalty when a UAV v crashes into
obstacles, and €3, € are both constants. Our goal is to design a
MADRL framework that can navigate a group of UGVs and
UAVs cooperatively to collect sensory data, while bearing in
mind that UAVs and its carrier UGV forms a coalition.

(14a)

& = (14b)

V. PROPOSED SOLUTION: GARL
A. Overview

As shown in Fig. 2, our proposed model GARL mainly
consists of a multi-center attention-based GCN “MC-GCN”
for UGV specific feature extraction, and a novel GNN-based
communication mechanism “E-Comm” for MADRL that al-
lows the UGV cooperations to be adaptive to the constant
changing of geometric shapes formed by UGVs. For each
UGV u € U, its structure can be depicted as follows:

hY = MC-GCN(oY), (152)
R = E-Comm(h¥ {hY }uenru), (15b)
meu(ay|hy) = fF(hy), (15¢)
Vou(hy) = f) (i), (15d)
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Fig. 2. Overall proposed model GARL.

where N (u) denotes the set which contains the nearby UGV
u’ closing to a UGV w; 6" contains the total learnable
parameters; mgu represents policy, and Vpu represents value
function. First, according to Eqn. (15a), MC-GCN takes the
current observation o} gf a UGV wu as input, and extracts
UGV specific features hy' from UGV stop network. Then,
E-Comm module combines the UGV specific features and
its neighboring UGVs to support geometrically equivalent
cooperation and generates compact feature hy for UGV u
(see Eqn. (15b)). Subsequently, through f7(-) and fY(.),
the compact feature hj is mapped to an action distribution
7o« (@} |h}') and a value function Vg (h}'), respectively, as
shown in Eqn. (15¢) and (15d).

Correspondingly, for each UAV v € V), the whole process
can be described as:

= ¢U(O:&j>7 (16a)
mev(ai|hy) = fi(hY), (16b)
Voo (h2) = 1Y (h2), (16¢)

where ¢, (-) contains several CNN layers and outputs a com-
pact feature hy for UAV v. Then, as shown in Eqn. (16b)
and Eqn. (16¢), the compact feature is mapped to an action
distribution mg. (a}|h?) and a value function Vg (h}).

B. UGV Feature Extraction for Spatial Modeling by MC-GCN

In order to make proactive and appropriate decisions for
UAVs-UGV coalitions, a UGV is expected to discover use-
ful information from observations for subsequent decision-
making. Intuitively, a UGV wu has relatively higher possibility



to choose the stop nodes not far away, since a UGV u is more
“familiar” to the stop nodes nearby from local observation.

To this end, we propose MC-GCN, a multi-center attention-
based GCN to extract UGV specific features from the global
stop network. MC-GCN considers not only the position of
each UGV itself, but also the positions of its nearby UGVs,
to generate more valuable features of stop nodes.

The forward process of MC-GCN can be divided into
two phases. First, in Feature Collection Phase, MC-GCN
captures two aspects of features (i.e., structure- and node-
related features) from the stop network observed by each UGV
to obtain graph as intact as possible. Specifically, each UGV
maintains its own perceived global stop graph based on their
observations, and MC-GCN process is conducted on each
graph, respectively. From the perspective of a UGV w, the
process of capturing structure-related features can be depicted
by:

a(hY¢ U 1 '

5(by',b) = s (b, b) — U-1 Z s(by,b),  (17a)
u' eU—{u}

Spt = [3(b}', 1), ..., (b}, b), .., (b}, B)] T, (17b)

where s(-) represents a structural correlation function that
captures the graphical structural relationship between two
nodes (e.g., the reciprocal of shortest path distance), and b}’
denotes the current stop node of a UGV wu at t.

According to Eqn. (17a), §(b¥, b) can be regarded as struc-
tural relevance evaluation of stop node b by UGV u, where
the relationship between other UGVs and node b are also
taken into account. The structural relevance s(b?l, b) of other
UGVs on node b is then subtracted to consider the possibility
that a stop node b may be accessed by other UGVs. Finally,
we combine the structural information from all nodes to get
structure-related features S}* of a UGV w. Specifically, we
introduce shortest path distance [37] between nodes b, and

b,,, as:
di = { dsp(bmabn)a
Sp 00

where threshold ¢ defines the scope of relevance between
nodes. If two nodes whose shortest path distance exceeds g,
they are considered as unreachable nodes from each other.
MC-GCN uses the reciprocal of the distance, meaning that
closer nodes have stronger relationship in graph structure. To
avoid the interference of zero denominator, we add a small
positive term to the denominator as:

u 1
SO0 = T
To this end, the structure-related feature S} of UGV u’s
observed graph is obtained.

Next, in Feature Extraction Phase, MC-GCN utilizes the
previously obtained features to generate the weights of GCN
layers, and eventually, obtains the UGV specific feature rep-
resentation through the GCN with attention module. It guides
each UGV to focus more on those stop nodes which not only

dsp(bma bn) < q

otherwise, (18)

19)

have relatively more remaining data (thus collecting them will
generate reward), but also far away ones to avoid possible
interest overlap. Specifically, the structural-related feature S
and node-related feature IN are combined to measure the
importance of UGV stop nodes by attention mechanism, as:

Ftuu',(l) _ HZL,(Z)Wl(l)(Hgf(l) [b;‘,])T, (20a)
u,(l w, (1 1 uu’ (1
NeO — Fr <>_m S FY (ob)
uw eU—{u}
CZ"(Z) = Softmax(S}" - Ntu7(l))7 (20¢)

where F""! is the output of attention module in I-th GCN
layer with attention reduction and Wj is a learnable weight
matrix. We use node b;‘/ to attend on all other nodes with
a UGV in the graph from its perception. Then, similar to
structural-related feature, the node-related feature is obtained
by subtracting self-node attention from cross-node attention.
This kind of operation allows a UGV u to find the important
nodes to focus on and keep the interest separated from
other UGVs, by considering others’ attention on these nodes.
Finally, the attention weight C' is combined with these two
features by softmax normalization.

The mechanism above is operated in each GCN layer,
providing additional weights in the forward process of GCN:

H Y = o0V (LH W), e

where L is the Laplace matrix and H,' D is UGV w's graph
input for the [-th layer. For the initial setting, we take H," 0 =
XtB o from a UGV’s observation. Finally, the UGV specific
features hj' of stop network centered on a UGV u can be

extracted from the top layer of GCN outputs:

hy = ¢ (H" V), (22)

where ¢y is a linear readout function.

C. Equivariant Multi-Agent Communication among UGVs by
E-Comm

E-Comm is a GNN-based communication mechanism that
well adapts to constant changing of geometric shapes formed
by UGVs, including transformation and rotation [38]. Existing
GNN models are invariant to the change of geometric at-
tributes of graph nodes, which is different from the unevenness
of data in our considered air-ground SC task with UAV
carriers, that we should carefully consider. As an example,
the shape formed by UGVs at a time may keep similar after
translation or rotation, but UGVs should behave differently
since their geographical positions are changed.

Inspired by Equvariant Graph Neural Networks (EG-
NNs [39]) which preserved the equvariance of translations,
rotations and permutations on a graph, we proposed E-Comm
to keep the communication process sensitive to geometric
transformation. We regard each UGV as a graph node to
build a communication graph, and design the message passing
scheme among UGVs, as part of decentralized MADRL. E-
Comm consists of invariant Message Aggregation phase, and



equivariant Target Updating phase, then the composition of
them still preserves equivariance. In forward process, we
. ) . u, (1) .

introduce non-geometric feature h,”"’ and geometric feature

a; ‘® into E-Comm layers, which are initialized as:
RO = po. (23a)
gn = g, (23b)

These two features are messages transmitted among UGVs
and updated through E-Comm layers.

1) Message Aggregation Phase among UGVs: To aggre-
gate messages from other nodes, E-Comm is operated in a
weighted-sum manner, where the weights are designed based
on the geometric distance among UGVs. We estimate the
distance between UGV u and u’ by their geometric feature,

as:

Tfu"()—gt (l)—gt uEJ\/() (24)
where A (u) represents the neighborhood of a UGV w. Since
this substraction only preserves the relative position between
two UGVs, the output is geometrically invariant.

In the communication graph, distant UGVs tend to affect
less with each other. For a UGV wu, we take reciprocal of
the norms ||r 2 /’(l)|| to generate the normalized importance

uu’ (1)

weights o, of messages from a UGV v/, given u' €

N (u), as:

uu’ (1
exp(||r V1

Zu”e./\/'(u) CXp(Hrt

a?u',(l) -

”,(l)H—l)' 5)

With the weights, the message aggregation process in [-th E-
Comm layer can be defined by:

my O = o) (), (262)

0 ap Dyt (26b)
u' €N (u)

he Y = o) (R mi ), (26¢)

where ¢, and ¢, are linear functions. From the view point
of a UGV u, the aggregated message mt“’(l) combines mes-
sage m?” “® from other UGVs in its neighborhood. Finally,
UGV u’s non-geometric feature is updated by the aggregated
message for next layer.

2) Target Updating Phase among UGVs: In each E-Comm
layer, the geometric feature g, D s updated in a radial
direction guided by the distance measurement r“"/’(l) to
estimate the target position of a UGV w. It is notable that the
measurement 7, “)" contains directional information since
this measurement is a subtraction of geometric feature of a pair
of UGVs which are learned from coordination in 2D space.

Here, we introduce g,” ' {0 estimate the joint effect on a
UGV u from those UGVs in u’s neighborhood:

Z auu s l)¢(l

u' €N (u)

~u,l uu7l ~uu’ (1
@ () (),

27

us( s the unit

is a linear message encoder, f*f
vector of 7, ERLONTS keep directional information only. Refer-
ring to resultant force in physics, the vector sum of 7, v
accumulate the effect from others, which tends to keep a UGV
u from gathering with other UGVs. Considering this effect, the

geometric feature of UGV u is updated by:
~u,(1)

where ¢_£,”

gD gu® | i

u,(l)

s Gmaz)- (28)

To constrain the update range, g,
vector Gpmaz-

Finally, we readout the features from the top layer of E-
Comm to extract the graph representation. This process in
depicted by:

is clipped by a constant

(29a)
(29b)

2 = X g Wa(g )T,
u u, -1 u
he = ¢, ((hy Y 21)),

where z;' extracts the relationship between the position of
target g, 1 and all stop nodes, which reflects UGV u’s
preference among all stops.

As shown in Eqn. (29b), invariant feature h;” and
equivariant feature z;* compose the final readout, which is
geometrically equivariant as well.

(=1

D. Algorithm Description and Computational Complexity
Analysis

The entire training process of GARL is shown in Algorithm
1. We train GARL for M iterations.

First, we initialize learnable parameters for UGVs and
UAVs, respectively (Line 1), and start the loop for sampling
and training (Line 2). Since the base design our model is
IPPO, we initialize the training buffer D" for a UGV u,
and the training buffer DV for a UAV v (Line 3). Next, we
start the loop for sampling in the air-ground SC environment,
where the duration of a task is divided into 7" timeslots (Line
4). Then, all UGVs interact with the environment together
(Line 5). In each timeslot [t,¢ + 1), each UGV w first gets
local observation oy from the environment (Line 6). Then,
a UGV u generates its specific feature h} using Eqn. (15a)
and Eqn. (15b) (Line 7). After, it samples its own action
a} according to mgu(a}'|h}) (Line 8), and calculates value
function V* according to Vgu(h}) (Line 9). If a UGV u
decides to release the loaded UAVs following its sampled
action, or a UGV u is still waiting for the UAVs to return, all
UAVs released by this UGV will interact with the environment
together (line 10). Each UAV v first gets its local observation
o; from the environment (Line 11). Then, a UAV v extracts
its distinct feature hy using Eqn. (16) (Line 12). After, it
samples its own action a} according to mg» (a} |h}) (Line 13),
and calculate value function V;” according to Vg« (hY) (Line
14). After all UGVs and UAVs execute their actions, they will
receive an individual reward and the environment transits to
next state (Line 15). Then, we start to train the parameters of
the neural network models for UGVs and UAVs (Line 16). We
compute accumulative rewards R% and advantage A%, from
trajectory for each UGV and UAV (Line 17). For a UGV (Line



Algorithm 1: GARL

1 Initialize UGV parameter 8% and UAV parameter 6.
2 for iteration=1,2,--- , M do

3 Set training buffer D" = D = {};

4 fort=1,2,--- T do

5 for u=1,2,--- .U do

6 Get local observation oy;

7 Generate feature hy by Eqn. (15a) and

Eqgn. (15b);

8 Sample action a} ~ mgu(ay'|h});

9 Calculate value V" < Vgu(h}');

10 foreach UAV v for u do

11 Get local observation o};

12 Generate feature hy by Eqn. (16);

13 Sample action a} ~ g (a}|h});

14 Calculate value V! < Vg (hY);

15 Execute actions of all UGVs and UAVs,
| receive reward and transit to next state;

16 foreach UGV and UAV do

17 Compute accumulative rewards RLT and

advantage A;.7 from trajectory;

18 if UGV then

19 ‘ DY =D* U {(RI:T; Al:Ta Vl:T)};

20 else

21 | DY =D U{(Rur, Avr, Vi)

22 Optimize surrogate loss in Eqn. (3) w.r.t 8% and
6", with J times and mini-batch sampled from
D" and DY;

23 0y, 0%, 0, 6°.

18), we add the tuple (RLT, Ay, Vi) into training buffer
D" (line 19); otherwise (Line 20), the tuple will be added
into training buffer D (Line 21). After collecting the training
samples, we start the training process. We optimize 8* and 6"
by Eqn. (3) in total J times through sampling mini-batches
from D* and D", respectively (Line 22-23).

GARL includes the vanilla PPO policy network that con-
tains several convolution and linear layers. We compute the
time complexity of forward process according to [40]. For
UGVs, MC-GCN, E-Comm and PPO network handle vector
input, which only contain fully connected layers, as:

(30)

Hy,
O(> Duii-Dai),
i=1

where H, is the number of linear layers; D; ; and Dy ; are the
dimension of input and output features of i-th linear layers.
For UAVs, they take image input as local observation,
thus both convolution layers and linear layers are included
in the forward process. The time complexity for UAVs can be

computed by:

Hc

H
O(ZLDu D+ 3 D3, D3, Dsi- D), (D)
=1 i=1

where Hy, and H¢ is the number of linear layers and convo-
lution layers; D;,; and Ds; are the dimension of input and
output features of ¢-th linear layers; D3 ;, Dy ;, D5 ; and Dg ;
are the size of output feature maps and convolution kernel,
the number of input channels and output channels of the i-th
convolution layer.

VI. PERFORMANCE EVALUATION

A. Campus Description and Simulation Setting

We use two campuses KAIST, South Korea and UCLA,
USA, to simulate our considered air-ground SC task with UAV
carriers, and in particular to collect CCTV camera and sensory
data deployed in/around the buildings. Campus lanscapte data
are obtained from Google Map by using OpenStreetMap
and pre-processed for our simulation, including setting the
boundaries of buildings and the trace of roads. KAIST campus
has a relatively simpler road network, while UCLA campus is
more complicated. Google Map is used to mark the positions
and the shapes of buildings and mountains. KAIST spans
1433.37 meters from north to south and 1539.63 meters from
east to west, covering about 2.21 million square meters. We
randomly placed 138 sensors on 85 buildings; UCLA spans
1737.15 from north to south and 1675.36 from east to west,
covering 2.91 million square meters. Likewise, we place 236
sensors on 163 buildings in UCLA campus.

UAVs have weak long-distance travelling capability due
to limited battery supply but good short-distance mobility.
However, UGVs have good long-distance mobility but can
only move following the roads. We set the length of each
timeslot as 30 seconds. Each sensor p is initialized with data
amount dfj, which is randomly generated within range 1GB
to 1.5GB. The initial location of each UGV is set in the
center of two campuses. According to TS-X4, the maximum
flying speed of UAVs is 12km/h and its initial energy reserve
is eg = 10kJ [41]. Energy consumption weight factor n =
0.01kJ/m, the sensing range for UAVs is 60 meters, and the
data collection rate for UAVs are 166.7 Mbps per sensor,
respectively. For UGVs, we put UGV stops every 100 meters
along the roads and assume that UGVs can maximally travel
400 meters in a timeslot (equivalent to the maximum speed
48km/h [42]).

In all the experiments, we use Pytorch 1.8.1 to implement
our proposed model, and all the codes are run on Ubuntu
18.04.2 LTS with 8 GeForce RTX A6000 graphic cards.
We conduct three sets of experiments, including impact of
hyperparameters, ablation study and comparing with baselines.
Results are compared from data collection ratio v, fairness &,
cooperation factor ¢ and low energy consumption ratio 3, as
well as the final performance index efficiency A.



TABLE 11
IMPACT OF NO. OF LAYERS IN MC-GCN LMC AND NO. OF LAYERS IN E-CoMM LZ (WHEN U = 4,V’ = 2).

] LMC LE
Campus | Metric T 5 3 T 3 i 5 3 T 3

A 0.8280 0.9211 0.9970 0.9760 0.8665 | 0.7215 0.9064 0.9970 0.9852  0.9487

P 0.5023 0.4221 0.6198 0.5234 0.5236 | 0.5394 0.5552 0.6198 0.6156  0.5937

KAIST 13 0.5282  0.4439 0.6391 0.5513 0.5475 | 0.5558 0.5716 0.6391  0.6323  0.6209

¢ 0.7025 0.7676  0.6760  0.7277  0.6588 | 0.5445 0.5174 0.6760 0.5783  0.6270

B 0.2361 0.1663 0.2786  0.2228  0.2255 | 0.2533  0.1913 0.2786 0.2493  0.2539

A 0.5190 0.5619  0.6137 0.5961 0.5658 | 0.5099 0.5548 0.6137 0.5804  0.5645

P 0.3600 0.3634 04511 03897 0.3891 | 0.3510 0.3716 04511 0.3730 0.3725

UCLA 13 0.3812 03818 0.4667 0.4121 04155 | 0.3723  0.3885 0.4667 0.3981  0.3951

¢ 0.7230  0.7346  0.7244  0.7215 0.7435 | 0.7005 0.6913  0.7244  0.7703  0.7422

Jé] 0.1985 0.1882 0.2613 0.2024 0.2193 | 0.1939 0.2000 0.2613  0.2109  0.2059
TABLE III GCN employs only graph convolution, missing the different
ABLATION STUD?\( (U=4aND V' =2). importance between neighboring nodes generated by attention
Campus GARE/I cthod 09970 0‘611198 0.6291 0'6260 O_ngﬁ mechanism as in our proposed MC-GCN. Thus the feature
KAIsT | GARL w/o MC 07036 04952 05205  0.6575 02530 extraction may attach more importance on nodes far away,
giﬁi Xﬁg E,IC‘ E 8:2;}3 8;22‘7’3 8:2232 8:2;28 8;%3 which will lead the UGVs to go to certain places with less
GARL 0.6137 04511 04667 0.7244 02613 data to collect. GARL achieves 22.81% and 20.79% higher
UCLA giﬁi i”ng E“ 8:;%;3 8§§§f 8%33 8:;?22 8:3‘1‘%2 efficiency than that of GARL w/o E in two campuses, due to
GARL w/o MC, E | 0.3396  0.3200 0.3343  0.7033 02356 the help of our proposed communication mechanism between

B. Impact of Hyperparameters

We select two key hyperparameters from MC-GCN, where
LMC LF determines the number of layers in MC-GCN, E-
Comm, respectively. As shown in Table II, we find that
all of two hyperparameters yield a peak value in terms of
efficiency. When LMC is too small, the receptive field of
each UGV stop node during graph convolution will not be
big enough to consider sufficient neighboring nodes’ features;
in another extremity, when the L is too big, the features
extracted from each UGV stop node are too general since they
consider too many nodes which are far away. Obviously, either
extremity worsens the overall performance. Similarly, in E-
Comm, when the L¥ is too small, each UGV can only obtain
the information of UGVs nearby, which will result in low level
of cooperative policies for the UAVs-UGV coalition. On the
other hand, when the L¥ is too big, the received message may
contain redundant information which makes it difficult for a
UGV to extract useful ones from the message. Therefore, we
choose LM¢ = 3 and L¥ = 3 as the best hyperparameters
used in the following experiments.

C. Ablation Study

We choose 4 UGVs and 2 UAVs per UGV as the setting of
our ablation study, which is performed by gradually removing
two key components of our model, i.e., MC-GCN (MC) and
E-Comm (E). As shown in Table III, the complete model
GARL achieves 41.70% and 49.17% higher efficiency than
that of GARL w/o MC in KAIST and UCLA campuses,
respectively. This confirms that proposed MC-GCN model
is able to extract feature from the state more comprehen-
sively especially when the environment (i.e., UCLA campus)
is more complicated (compared to KAIST campus). If not,

UGVs in message integration. This benefit is clear for UCLA
campus whose topographic landscape is more irregular and its
east/west parts are connected with a thin area which does not
contain much data to be collected. Furthermore, GARL w/o
MC achieves 21.09% and 21.16% higher efficiency than that
of GARL w/o MC, E in two campuses. Finally, GARL w/o
E achieves 39.72% and 49.61% higher efficiency than that of
GARL w/o MC, E in two campuses, which proves that our
proposed MC-GCN model do help UGVs accurately locate
the most important information relevant to the current UGV’s
partial observation.

D. Comparing with Eight Baselines

We compare our method GARL with eight baselines, as:

e CubicMap [21]: It is a memory augmented CNN-based
method with cubic writing and spatially contextual read-
ing mechanisms to extract long-term spatiotemporal fea-
tures. We consider it as the state-of-the-art approach for
UAV-aided SC.

e GAM [9]: It is a GNN based method that adaptively
accesses the sequence of UGV stop nodes ordered by
the importance to extract both long-term and short-term
spatiotemporal features. We consider it as the state-of-
the-art approach for spatial modeling.

o GAT [8]: It is a classical graph feature extraction method
as an extension of GNN where attention mechanism is
used to attach importance on different neighboring nodes.

e AE-Comm [43]: It designs a communication auto-
encoder to generate a common language among all
MADRL agents. This auto-encoder is used to transform
the agent’s observation to the common language repre-
sentation. We consider it as the state-of-the-art approach
for communication based MADRL methods.
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Fig. 4. Impact of no. of UGVs and UAVs in terms of data collection ratio 1.

e DGN [44]: It is an attention based method to enhance
agent communication that attaches different importance
on neighboring nodes and aggregates their messages
according to their importance.

e IC3Net [10]: It is a classical communication model
for multi-agent environment which uses individualized
LSTM policy and a gating mechanism to control when
to communicate among agents.

« MADDPG [30]: It is a classical MADRL method aided
by a distributed prioritized experience replay.

« Random: For each UGV and UAV, we sample an action
uniformly from action space.

Results are shown in Fig. 3 - Fig. 6. We make four important
observations.

Our proposed model GARL consistently outperforms all
eight baselines in terms of efficiency in both KAIST and
UCLA campus environments. The reason comes from three
aspects, namely: accurate feature extraction from spatial mod-
eling, efficient communication mechanism among UAGs, and
used underlying MADRL base model. In terms of spatial
modeling, CubicMap is a memory augmented CNN-based
method, but not based on GNN, thus cannot have clear
overview of the geometric structure of the UGV stop network,
which is crucial in our considered air-ground SC tasks with
UAV carriers. GAT uses attention mechanism to capture the
different degrees of importance of immediate neighboring
UGV stop nodes, however it does not consider all other UGV

stop nodes which can be a bit far away but still useful to
understand the current entire workzone state. GAM slightly
outperforms GAT, due to its combination with GNN and
LSTM that traverses all the neighboring stop nodes. Since
both methods are built on the view of single UGV, they can not
distinguish the benefits brought by other UGVs, thus it is likely
that UGVs may gather together around certain stop nodes
with high importance without exploring the whole workzone,
resulting in poor fairness, data collection ratio, and ultimately
overall efficiency.

In terms of communication mechanism among MADRL
agents, IC3Net employs LSTM to aggregate the messages
received from other UGVs during several past timeslots. This
helps learn from historical actions, however simply using
average operation to compute target estimation is not enough
which blurs the distinct geometric feature of neighboring
UGVs. For example, UCLA campus is more irregular com-
pared with KAIST, thus IC3Net performs much worse than
other baselines in UCLA. DGN uses attention mechanism to
evaluate the importance of messages from neighboring UGVs.
However, it does not fully consider the constant geometrical
changes of the shape formed by UGVs into the design of
MADRL communication mechanism, which is quite essential
especially when sensory data distribution is not uniform. AE-
Comm outperforms DGN and IC3Net by a large margin,
due to its employed auto-encoder scheme that generates a
common language among all agents. It transforms local ge-



A~ GARL —B— CubicMap IC3Net A~ GARL - CubicMap IC3Net

-~ GAM -©- AE-Comm - MADDPG
©— Random

- GAM -©- AE-Comm -H- MADDPG
GAT )~ DGN

GAT —— DGN ©— Random

o
0

o
9

Fairness (&)
© o
w o

o
»

o
W

0.2

~A- GARL —>— CubicMap IC3Net

-~ GAM -5 AE-Comm -5~ MADDPG

~A~ GARL —B— CubicMap
-~ GAM -©- AE-Comm -~ MADDPG

IC3Net

0.7 GAT —{— DGN s— Random 0.6 GAT —— DGN — Random
Tos G0
%) w
v wn
9] 1]
£05 £04
© ©
w w

o

~
o
w

o
w

0.2

10 T2 03 10

4 5 6 8
No. of UGVs (V)

(b) UCLA (V' = 2)

4 5 6 8
No. of UGVs (U)

(a) KAIST (V! = 2)

2 3 4 2 3 4
No. of UAVs (V') No. of UAVs (V')

(c) KAIST (U = 4) (d) UCLA (U =4)

Fig. 5. Impact of no. of UGVs and UAVs in terms of fairness &.

—A- GARL - CubicMap IC3Net —A- GARL > CubicMap IC3Net ~A- GARL —>— CubicMap IC3Net ~A- GARL —B— CubicMap IC3Net
7 GAM -©- AE-Comm -E- MADDPG ¥~ GAM -©- AE-Comm -5 MADDPG 0.91 & GAM o~ AE-Comm -5~ MADDPG % GAM -©- AE-Comm -5+ MADDPG
08 GAT 4~ DGN ~> Random | __ GAT 4~ DGN —e— Random | _ GAT %~ DGN o Random | _ 0.9 GAT 4~ DGN —5— Random
S S 1SS )
— — 0-8 — 0'8 —
S S e] 208
S 2 S So.
907 O 9} o]
© © © ©
w w w 0.7 w
C c [ = fed
<] 507 5] 507
=1 =1 =1 =}
© 0.6 © ©0.6 ©
@ 9] 9] 9]
Q Q Q Q0.6
1) 906 1<) 19
o o Y- Q0.5 o
Sos o o o
0.5
0.4 S
7 3 o 93 3 10 i ) 5 i 7 5

4 5 6 8
No. of UGVs (U)

(b) UCLA (V' =2)

4 5 6 8
No. of UGVs (U)

(a) KAIST (V' = 2)

2 3 2 3
No. of UAVs (V') No. of UAVs (V')

(c) KAIST (U = 4) (d) UCLA (U =4)

Fig. 6. Impact of no. of UGVs and UAVs in terms of cooperation factor (.

ometric feature into a global language for all the UGVs to
understand, so the message aggregation phase will be much
easier and comprehensive. As a result, the extracted feature
from messages is clearer, and making the policy model and
value critic model more accurate. Unfortunately, AE-Comm
lacks a mechanism to carefully handle the spatial information;
as a result, its performance is worse than our methods.

In terms of used underlying MADRL base model, although
MADDPG is quite classical, its employed deterministic policy
DDPG is not good at action exploration, which is crucial in
our campus environment. We use IPPO as the start point of
our design, which has much better capability to explore the
complex environment than MADDPG.

The spatial complexity of two campus environments has
big impact on the performance of all methods. In GARL, we
see that UCLA cannot obtain the same level of efficiency as
KAIST, when fewer UGVs and UAVs are employed. However,
as more UGVs are added (thus loaded UAVs as coalitions),
UCLA receives much higher efficiency than KAIST. This is
because that not much data can be found in the center of
UCLA campus (fewer building as lawns), and in order to
collect data in the west, UAVs need to be carried by UGVs,
possibly from east to the west. This observation is consistent
for other spatial modeling baselines, that performance under
KAIST is better than UCLA.

When increasing the number of UGVs, the efficiency,
fairness and data collection ratio of all methods go up. For

example, when U changes from 6 to 8, efficiency is increased
by 47.92% in KAIST and 26.26% in UCLA (see Fig. 3(a)
and Fig. 3(b)). This is because 6 UGVs cannot collect all the
data from nearby area so that UGVs will not send UAVs to
farther places to collect data. On the other hand, when 8 UGVs
well cooperate with each other, data nearby is completely
collected so our method allows UGVs to carry their loaded
UAVs to reach far away areas. However, cooperation factor
of our method goes up first and then down in KAIST, while
going straight down in UCLA (see Fig. 6(a) and Fig. 6(b)).
We hypothesize that at first, more UGVs will help enhance the
performance of UGV-UAVs coalition, but too many UGVs will
not bring further benefits. This is because the loaded UAVs
may compete with each other to collect sensory data leading
to the decrease of data collection ratio.

When increasing the number of UAVs loaded on each
UGYV, Random approach does not change much for all metrics
because it lacks enough explorations or spatial modeling. The
attained efficiency from other methods first goes up then
down, as shown in Fig. 3(c) and Fig. 3(d) in KAIST. This is
because that there may not be enough data to collect around
a single UGV thus UAVs released by this UGV will waste
time searching in the same area. As a result, we see data
collection ratio goes up but both fairness and cooperation
factor go down. In UCLA, efficiency will go up rapidly from
V' =1to V' =4 (see in Fig. 3(d)), and then fall down when
V' = 5, so the bottleneck becomes the number of UGV-UAVs
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coalition for range extension. In terms of cooperation factor,
all methods give downward trend (see Fig. 6(c) and Fig. 6(d)).
This is because that since all the UAVs in a particular UGV are
released at the same point, competition is inevitable, leaving
an insight that too many UAVs on one single UGV may not
be helpful to bring further benefits.

E. Ilustrative Trajectories of UGV-UAVs Coalitions

In Fig. 7, we show the trace of UGV-UAVs coalitions after
running 100 timeslots when U = 4,V’ = 2. We choose four
best baselines (two communication based methods and two
spatial modeling methods), AE-Comm, DGN, GAM and GAT,
for illustration, according to Section VI-D, as well as GARL.
We see that AE-Comm and DGN lead to meaningless UGV
wanderings in the same areas multiple times (see inefficient
UGV movement in KAIST, from Fig. 7(b) and Fig. 7(c)), or
simply carrying UAVs to move around even if there is adequate
data to be collected (see inefficient UGV movement in UCLA,
from Fig. 7(b) and Fig. 7(c)). However, this phenomenon
is not likely to happen in GAM or GAT, but may lead to
competitive UGV gathering in the same area (see overlapped
areas in Fig. 7(d) and Fig. 7(e)). On the contrary, our method
GARL produces nice UGV trajectories to be responsible for
a sub-workzone (no overlapping or missing data movements),
to release the UAVs to collect the data nearby, before heading
to the next UGV stop.

F. Computational Complexity Analysis

Computational complexity in terms of both time cost and
graphic card memory usage during testing phase is shown in
Table IV. With U = 4 and V' = 2, we observe the running
time for a UGV from inputting observation to producing
actions in a timeslot by our method GARL. The time cost

TABLE IV
COMPUTATIONAL COMPLEXITY OF ALL METHODS.

Method Time Cost (ms) Graphic Card Mem. Usage (MB)

KAIST UCLA | KAIST UCLA

GARL 0.553 1.121 935 937
GAM [9] 0.66 1.167 939 945
GAT [8] 0.493 0.552 813 841
CubicMap [21] 1.023 2417 1348 1506
AE-Comm [43] 0.552 0.786 907 943
DGN [44] 0.379 0.523 935 937
IC3Net [10] 0.688 0.892 975 997
MADDPG [30] 2.108 3.892 805 836

is slightly higher than some baselines. However, it is still in
the scale of millisecond, which is negligible in practice. Even
if our proposed model GARL uses relatively high amount of
graphic card memory compared with MADDPG, it is still
acceptable compared with the benefits it brings, which has
been shown in previous sections.

VII. CONCLUSION

In this paper, we explicitly consider a new type of air-
ground SC tasks with UAV carriers, and navigate a group
of UGV-UAVs coalitions to perform sensory data collection.
Specifically, we propose a novel deep model called GARL,
which consists of a spatial modeling module MC-GCN (to
extract UGV specific feature from its own observation of UGV
stop network), and E-Comm for MADRL communication
(equivariant to geometric transformation of the shape formed
by UGVs considering uneven distribution of data over the
environment). We conduct extensive experiments on two cam-
pus environments KAIST and UCLA, where results confirm
that our proposed method consistently outperforms all eight
baselines in terms of efficiency.
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