L)

Check for
updates

HiMacMic: Hierarchical Multi-Agent Deep Reinforcement
Learning with Dynamic Asynchronous Macro Strategy

Hancheng Zhang
Beijing Inst. of Tech.
Beijing, China
hancheng@bit.edu.cn

Guoren Wang
Beijing Inst. of Tech.
Beijing, China
wanggr@bit.edu.cn

ABSTRACT

Multi-agent deep reinforcement learning (MADRL) has been widely
used in many scenarios such as robotics and game AL However,
existing methods mainly focus on the optimization of agents’ micro
policies without considering the macro strategy. As a result, they
cannot perform well in complex or sparse reward scenarios like
the StarCraft Multi-Agent Challenge (SMAC) and Google Research
Football (GRF). To this end, we propose a hierarchical MADRL
framework called “HiMacMic" with dynamic asynchronous macro
strategy. Spatially, HiMacMic determines a critical position by using
a positional heat map. Temporally, the macro strategy dynamically
decides its deadline and updates it asynchronously among agents.
We validate HiMacMic in four widely used benchmarks, namely:
Overcooked, GRF, SMAC and SMAC-v2 with nine chosen scenarios.
Results show that HiMacMic not only converges faster and achieves
higher results than ten existing approaches, but also shows its
adaptability to different environment settings.

CCS CONCEPTS

« Computing methodologies — Multi-agent reinforcement
learning.

KEYWORDS

Multi-agent deep reinforcement learning, macro strategy

ACM Reference Format:

Hancheng Zhang, Guozheng Li, Chi Harold Liu, Guoren Wang, and Jian
Tang. 2023. HiMacMic: Hierarchical Multi-Agent Deep Reinforcement Learn-
ing with Dynamic Asynchronous Macro Strategy. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
"23), August 6-10, 2023, Long Beach, CA, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3580305.3599379

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD °23, August 6-10, 2023, Long Beach, CA, USA.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08...$15.00
https://doi.org/10.1145/3580305.3599379

Guozheng Li
Beijing Inst. of Tech.
Beijing, China
guozheng.li@bit.edu.cn

3239

Chi Harold Liu
Beijing Inst. of Tech.
Beijing, China
chiliu@bit.edu.cn
Jian Tang
Midea Group
Beijing, China
tangjian22@midea.com

/ Micro
p < policy

Macro strategy

or

- Fix/Learnable
.Z) Zergling

.2
Q .E) Hydralisk
1 Baneling

(b) Macro strategy with syn- (c) Macro strategy with artificial and fixed rules.
chronous decision making.

Figure 1: Motivation of this paper by examples in SMAC-v2
zerg_5_vs_5 scenario.

1 INTRODUCTION

Multi-agent deep reinforcement learning (MADRL) has shown po-
tentials in various applications such as life and medical sciences [41],
robotics [22, 23, 30, 42, 49, 51], and game Al [12, 13, 25, 27, 31]. In
order to solve the challenge of optimal cooperations among agents,
existing solutions [16, 21, 26, 33, 34, 37, 43] mainly used centralized
training decentralized execution (CTDE [18]) pattern by assign-
ing a global reward [28]. However, these approaches primarily
focus on micro policies (i.e., actions at each time step), lacking
decision-making at the macro strategic level. This lead to possible
discoordination among agents or suboptimal policies in challenging
scenarios [14, 36, 47], such as 6h_vs_8z in SMAC [36], zerg_5_vs_5
in SMAC-v2 [9], academy_3_vs_1_with_keeper (or simply keeper)
or academy_counterattack_hard (or simply hard) in GRF [20].
Take the zerg_5_vs_5 scenario in SMAC-v2 as an example, as
shown in Figure 1(a), if agents only consider the micro-operations,
then they prefer to fight against their own battle individually, by
selecting the first enemy found in their respective field of vision and
attack range without integrity. However, a good high-level macro


http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580305.3599379&domain=pdf&date_stamp=2023-08-04

KDD ’23, August 6-10, 2023, Long Beach, CA, USA.

strategy might be gathering together to fire to destroy enemy units,
rather than in three disconnected battle zones. Despite the fact
that curiosity-based auxiliary rewards [7] and goal-conditioned
hierarchical designs [3, 11] improved micro policy and achieved
the task-level understanding in single-agent settings, they cannot
be well applied to multiple agents directly. This is because that, on
one hand, if multiple agents share the same macro strategy, they
need to be trained and executed in a centralized manner, which
may not be feasible in practice; on the other hand, if each agent
adopts the macro strategy in a decentralized training and decentral-
ized execution (DTDE) pattern without centralized coordination,
agents will face the challenge brought by the impact of the unstable
environment during agent interactions.

Along the direction of CTDE, existing works relied on expert
knowledge in macro strategy design. Methods [17, 45, 47] stipulated
that agents share the same manually defined macro strategy dura-
tion. In other words, they idealized the macro strategy among mul-
tiple agents into a synchronous decision-making process. However,
it is impractical by enforcing agents to wait for others to terminate
and communicate with each other. As shown in Figure 1(b), Hy-
dralisk (denoted as H) H3 and H4 will soon destroy enemy H4, but
H1 and H2 are still in the process of attacking enemy H2. Given the
fact that the macro strategies of multiple agents are synchronous,
there will be contradictions and may lead to sub-optimal results. In
practice, cooperation of multiple agents should be asynchronous.
In this case, units H3 and H4 better choose a new strategy to attack
enemies H1 and H3 without waiting for their alliance H1 and H2.
Furthermore, although [46] allowed agents to select macro strategy
asynchronously, it fixed it as an established rule. As shown in Fig-
ure 1(c), it designed macro strategies with different time lengths of a
sequence of actions. The agent independently and asynchronously
selects the original actions and manually defines macro strategies.
Inspired by human players, when facing a combat-attacking enemy
Zergling (denoted as Z) Z4 and H1, a long-range unit, can use the
defined kiting strategy. That is, to attack and move back to pull
more space alternatively. However, a better strategy might be to
directly destroy the enemy units with a small amount of blood and
then focusing on the fire to destroy the remaining units on the right
hand side of the enemy, rather than mechanically implementing
the established strategy which results in unnecessary movement
and time loss. Furthermore, it is not convenient to adapt established
strategy to multiple types of agents (such as zergling, hydralisk,
baneling with random proportion) and flexibly applied to different
scenarios. Therefore, there lacks of a method that can guide micro
policies based on asynchronous macro strategy, where the latter
can dynamically optimize and update itself.

In this paper, we propose a hierarchical MADRL framework
called “HiMacMic", and its contributions are:

e We propose a hierarchical MADRL architecture called Hi-
MacMic, where agents are able to decide when and where
to perform the specific micro policy, navigated by the spa-
tiotemporal macro strategy.

e We propose a macro strategy deadline generation approach
by controller networks, to achieve dynamic and asynchro-
nous high-level strategy guidance of all agents and is adapt-
able to different tasks.

3240

Hancheng Zhang, Guozheng Li, Chi Harold Liu, Guoren Wang, & Jian Tang

e We propose a positional heat map from successful past expe-
riences to train the macro strategy, and an intrinsic reward
mechanism by measuring the Manhattan distance between
predicted positions from macro strategy and agents’ actual
positions to guide micro policy movement, to achieve higher
sample efficiency and cooperation in complex and sparse
reward scenarios.

e We evaluate HiMacMic in four common benchmarks, in-
cluding Overcooked, GRF, SMAC and SMAC-v2. Empiri-
cal results demonstrate that HiMacMic achieves both faster
convergence and better final results over 10 state-of-the-art
MADRL baselines. A complete set of ablation studies as well
as trajectory visualization are also given.

2 RELATED WORK
2.1 MARL with Only Micro Policy

Multi-agent reinforcement learning (MARL) consists of cooper-
ative [12, 48], competitive [4], and mixed settings [24, 32]. The
main challenge lies in assigning credit between the entire team
and individual agents to learn micro policies. Early attempts [35] at
value function factorization required expert knowledge for suitable
per-agent team reward decomposition. Furthermore, some meth-
ods [14, 42] adopted DTDE pattern and directly regarded other
agents as part of the environment that adopts a single agent algo-
rithm to train all agents together. Due to the lack of global informa-
tion, they cannot effectively address the environmental instability
issue caused by agent-environment interaction, leading to subpar
performance.

Following the CTDE paradigm [28], MADRL has made remark-
able progress [36] recently. For example, VDN [38] decomposed
the joint Q-value function into a sum of local utility functions and
used it to select action greedily. QMIX [34] used general mono-
tonic functions to decompose the joint Q-value function into a
sum of local value functions. QTRAN [37] proposed IGM condition
and mapped the joint value function to a new function that is de-
composed to each agent to reduce the strong constraint of QMIX
on monotonicity. Weighted-QMIX [33] put forward two weighted
mixing methods, centrally-weighted and optimistically-weighted,
which achieved better results in fitting IGM conditions, especially
in the grid world environment. QPLEX [43] used duplex dueling
network to avoid the inaccurate fitting of monotonic network at
the peak reward. FACMAC [30] used a centralized policy gradient
estimator without monotonicity constraint, to improve the micro
policy in continuous action space. However, these methods focused
on micro policy actions in each time step to seek cooperations with
dense rewards, and lacked consideration of cooperative decisions
from the perspective of macro strategy.

2.2 Hierarchical MARL with Macro Strategy

A number of approaches to single-agent hierarchical reinforce-
ment learning have been suggested, including goal-reach approach
(e.g., H-DON [19]), multi-level control (e.g., Feudal RL [8]), options
framework [39], skill based method [10], etc. These approaches are
conducive to the decomposition of complex problems from a macro
strategy perspective, guiding the micro policy to complete actions
according to certain strategies.



HiMacMic: Hierarchical Multi-Agent Deep Reinforcement Learning with Dynamic Asynchronous Macro Strategy

Migrated directly from single agent approaches, FMH [2] applied
Feudal RL [8] to multi-agent environments. HSD [47] introduced a
single agent skill-based method [10] through supervised learning
and thereby promoting skill discovery. RODE [45] used a clustering
method to generate a fixed number of invariant action space groups
as roles assigned to agents, and then selected actions according to
roles. MASER [17] generated subgoals from experience replay buffer
based on Q-function estimate, and used subgoals to guide agents
complete tasks hierarchically. However, these methods required
that the intervals to make macro strategies between all agents are
synchronized and also fixed based on human experiences. That is,
agents need to wait for others to complete their macro strategies,
and interval to make the next macro strategy is fixed that cannot
be modified dynamically during training process.

On the other hand, Mac-CAC [46] also emphasized that syn-
chronizing decisions across multiple agents in realistic settings is
problematic. Ideally in real life, agents should train and execute
asynchronously. In this way, macro strategy temporally extends
micro policy that can take different amounts of time based on the
environment situation. Unfortunately, they required the macro strat-
egy as a fixed path planning algorithm that cannot be modified, for
the reason of current policy gradient methods are not applicable in
asynchronous settings. In summary, existing macro strategies can-
not be flexibly and automatically tuned according to the dynamic
change of the underlying environment’s spatiotemporal informa-
tion, thus resulting in unsatisfactory overall performance.

3 PRELIMINARIES

We consider a fully cooperative task with N agents denoted as
N = {1,2,...,n,...,N} under a Dec-POMDP setting [28], as a
tuple < S, A, Z,r,P,O,N,y >. S is the finite set of global states,
A is the set of joint action space, Z is the set of joint observations,
r is the joint reward function shared among all agents, P is the
transition function specifying the state transition probabilities, O
is the observation function, and y is the discount factor.

Since the joint action and observation space grows exponentially
as the number of agents increases, it is challenging to use joint
action-value function to train an MADRL method directly. Recent
studies [37] tried to find the factorizable cooperation task according
to IGM condition, which showed promising results in complex
environment with many agents and large state-action space. As
shown in Eqn. (1), each agent selects a greedy action according to
their individual action-value functions in a decentralized fashion,
making it possible to use the unique global reward to optimize the
multi-agent cooperation problem.

arg max,| Q! (z},al)

¢y

argmax Q" (7,, ;) = : :

ar :

argmax N oN (riv ajt\’)

where t is the time step in an episode i = {1,...,¢,...,T} and 7; is
joint action observation histories, and a; is the joint action for all
agents at time step ¢.

In the CTDE regime, the mixing network is introduced to merge
all individual Q-values into Q' as:

O (erarse) = £ (Q" (efaf) N yose) @)

3241

KDD ’23, August 6-10, 2023, Long Beach, CA, USA.

where f™X represents different mixing functions. QMIX [34] pro-
posed a monotonicity function as one of the most widely used:

aQtﬂ (¢, az,s¢)
oQ" (17}, s1)

Then the micro policy network of multiple agents is trained with

TD loss:
Lp = Z b [(y?l’b

where b € B is the batch index and B is the batch size of transitions

sampled from a replay buffer. ylEtl is the target value denoted as ygﬂ =

>0, VneN,t.

®)

_ Qttl(r?, a?, sf))z] , (4)

rt +ymaxq,,, Qttl (Tt4+1, @r41, St+1;07), and 07 is the parameter of
the target network.

4 PROPOSED METHOD: HIMACMIC

We propose HiMacMic, consisted of four modules: macro strategy
controller (MaSC), micro policy controller (MiPC), high-level mix-
ing network trained with additional heap map loss, and low-level
mixing network trained with intrinsic reward, as shown in Figure 2.

First, we use MaSC to generate the macro strategy altv[a’n:

Ma,n _ _ Ma,n
a, " = (gf,d}") = MaSC(of, a,"5"), Vt,n, (5)
where altwa’n contains spatiotemporal information of a position

g} € G and deadline d € D. d} indicates the number of time

Ma,n

steps that @, " will last, during which the position will remain

the same. MaSC takes local observations o;‘ and altviai" as inputs,

combined with historical information h} | provided by GRU cell [6]
to produce an abstract representation. The latter, as a common head,
is then mapped to make macro strategies altv{a’" by MLP layers M.

The MaSC can be formally expressed as:

h' = GRU(h |, M(ol, d¥'®™)),  gi,d' = M(R}).

t-1

(©)

Then macro strategy altv[a’n is integrated into the input of MiPC,
which decides primitive action altvh’" for each agent to interact with
the environment, as:

Min _ yf: n jgn n Min
a, " = MiPC(o/,d}, g}, a,”"),

1 Yt, n,

™

where MiPC uses the same structure as in [34]. Next, following [37],
we define the joint value function, based on the individual value
functions of each agent at the macro strategic level as:

arg max ;s oMa(,, aItV[a; Q)

arg max a1 Q1 (rtl a?Aa’l;@l)
‘ (®)
N (N MaN QN
arg maXaIIVIa,N Q (Tt .4, ;0 )

where © is the parameters of MaSC. Similarly, the micro policy
level task factorization is given by:

Mi Mi
argmaxa;}ﬁ 0V (s, 9,.dr,a);0)

Ol (1 g1 gl Mill g1
argmaxa;;h,lQ (r,,g[,dt,at ,9,)

©)

) N ( N N JN MiN gN
argmaxa;;/h,N Q (Tt AN AN e )



KDD ’23, August 6-10, 2023, Long Beach, CA, USA.

Ma
Lhm

pi(9)

softmax(QM2(g"; 0™))

QM(g™ 0™

— Q" (v, a}'%;0) +—

Mixing Network  pamii:

N 0k gh 00+ Q ek ki 0Y) @Yl gl ") + Nl db; 0)

a™ = (gt dP)

ay™N = (g¥,dly

Ma,N
(o, 25"

= (g dd)

1 _Maa1l
(o, a7y

n ~Man
(of', a7y

S —

Hancheng Zhang, Guozheng Li, Chi Harold Liu, Guoren Wang, & Jian Tang

G|
£ rtMl

dist(glt, ®(x, y1)

n
di
) ) Mi
QM (z,,dy, g, all'; 0)+— { Tt _
ren atin

Jad  Mixing Network

LI /
Qi d, gt a™0Y) QN dY, g at™; 0%)

Mi,1 N gN N MiN
' (of', de', gt ary

141 41
(o, di, ge,apy

n ogn -n  Min
(o', d’, gt' ap-y

Figure 2: Overall structure of HiMacMic. Bottom is the decision-making process when high-level macro strategy inputs into
low-level micro policy. Upper part shows the process of optimizing network parameters in CTDE by using two mixing networks,
with the presence of heat map based self imitating learning loss and the intrinsic reward.

where 0 is the parameters of MiPC.

Finally, we optimize HiMacMic in CTDE mode by using two
mixing networks with the help of a novel heat map based self
imitating learning loss .Eﬁ’ln‘f and an intrinsic reward rivﬁ, under the
guidance of the macro strategy. Details will be given in the following
sections. HiMacMic has the following advantage, that on the basis
of micro policy, it models the agent cooperation by time-varying
macro strategies, to aid spatial exploration and temporal decision-
making, which might be quite conducive to better understanding
and completing tasks in difficult or sparse reward scenarios.

4.1 Asynchronous Deadline-Driven Dynamic
Macro Strategy Generation

Existing works HiTS [15] and TempoRL [5] used temporal abstrac-
tion from a macro perspective to seek a higher-level strategy. In-
spired by these works, we propose an asynchronous deadline (Asy-
DDL) driven macro strategy generation process, where durations
of macro strategies are not predetermined based on human experi-
ences and will be dynamically changed.

For each agent, when the deadline d} > 1, we keep its current po-
sition unchanged; otherwise we reselect a macro strategy according
to Eqn. (5), as shown in Eqn. (10):

o _ [ G -1), a1 "
o (g?+1’d?+1 . df=0.

To optimize a?ﬁ’", the reward between the beginning and ending

states of a macro strategy within dJ' time steps is calculated by:

n
Ma Ma _ 4 =1 At env
rt:t+d;’—1(Tt?t+d;1*1’at:t+d:'—l) = z :Atzo r+AL an

where r;"" is the extrinsic reward from environment. Agent updates
its own network parameters according to its own experiences and
cumulative rewards by Eqn. (11).

Different from previous studies that artificially defined a fixed
number of time steps to skip, the deadline of a macro strategy in

3242

HiMacMic is changing dynamically. This not only ensures that the
macro strategy has a certain continuity targeting certain spatial
position when d} > 1, but also expresses the urgency (if d} is
relatively small) and degree of task completion (highly likely so
if d! is big so that the same macro strategy remain unchanged
for a long period). Finally, our method allows different deadline
durations of all agents to asynchronously guide the underlying
micro policies in a dynamic way.

4.2 Spatial Navigation by Positional Heat Map
and Intrinsic Reward

Inspired by recent work in cognitive neuroscience [29] that
mice build a spatial map through the neurons in the hippocam-
pal and entorhinal cortex, we propose a two-dimensional heat map
@ (x,yl') — g € G to navigate an agent’s macro strategic move-
ment. The resolution is a hyperparameter that can be tuned. Specif-
ically, if the agents receive a successful signal at the end of an
episode (e.g., receiving battle winning signal in SMAC or maximum
reward in one time step in Overcooked and GRF), we calculate the
number of visits of all agents to a position g and update the heat
map C;(g) from episode i to i + 1 as:

Cin(9) = Cilg)+ ) D F(@(], y}).9).Va.i.

where F is a discriminant function that outputs 1 if and only if the
location of agent equal to the position updated in this round. In
this way, we obtain a statistical distribution p; related to successful
experiences:

(12)

Ci(g)
Z?;l Ci(g")
where G is the dimension of position space G. To obtain the self

imitation learning loss function based on the heat map, we calculate
the cross entropy distance between distribution p and Q as:

exp(Q(g:0™))
o exp(Q(g':0m)

pi(9) = (13)

G-1
L)2(em) =~ 3" pilg)log
g=0

(14)



HiMacMic: Hierarchical Multi-Agent Deep Reinforcement Learning with Dynamic Asynchronous Macro Strategy

Algorithm 1 HiMacMic

Init: reset environment and initialize 6 and ©.
Output: MaSC and MiPC.

1: while episode i =1,2,... do

22 fort=12...,Tdo

3: forn=1,2,....,Ndo

4 Get observation o} from environment;

5 Use Eqn. (5) and (10) to acquire altvIa s

6: Use Eqn. (7) to acquire aM1 o

7: end for

8: Take joint primitive action @} and acquire reward ré", s;;
9:  end for
10:  if update MiPC then
11: Sample (s1 B lt\Aa’l B It\/h L: B, fnv L: B) batch data from

buffer and calculate r, Mi by Eqn. (15);

12: Use Eqn.(16) to update MiPC;

132 endif

14:  if update MaSC then

15: forn=12,...,Ndo

16: Sample (s, gt , d" ?+d”’ fr;id,,) from buffer ;
17: Calculate rM t+d” , and L 5 by Eqn. (11), (17);
18: Calculate heatmap loss L}I\lﬁ by Eqn. (14);

19: Update MaSC by Eqn. (18);
20: end for
21:  endif

22: end while

where Q(g; ®") refers to the macro strategy value of agent n at
time step ¢t under a particular position g. The proposed positional
heat map has the following advantages:

o It enhances the agent exploration of environment. In Eqn.
(13), when no successful experience is collected at the be-
ginning, positional heat map presents a spatially uniform
distribution, which is conducive to guide multiple agents
to explore task environment comprehensively, and avoid
possible local optima.

It improves sampling efficiency. After successful experiences
are gained, certain positions on the heat map become focus-
ing areas as macro strategy, which guides agents to cooperate
to complete the task. This will in turn optimize the heat map
distributions again, and thus sampling efficiency is improved.

Finally, we use Manhattan distance dist(-) to measure the sum of
absolute difference between an agent’s mapped position by macro
strategy ®(x7, y}') and its predicted position g} from past trajecto-
ries. Then, we assign an intrinsic reward r, Mi from the micro policy
to guide the agent to reach the designated position quickly and
accurately as:

Miziz A
t N &n | dist (g}

_— 15
oG ) 49

where c is a constant penalty.

3243

KDD ’23, August 6-10, 2023, Long Beach, CA, USA.

4.3 Training Process and Complexity Analysis

As shown in Algorithm 1, in each training episode, we first use a
macro strategy and micro policy controller to acquire action for
each agent (Line 3-7). Next, we use joint primitive action to interact
with the environment (Line 8). When an episode is finished, we
save useful data (i.e., observation, location of agents, state, reward,
game status info from environment and the output of MaSC and
MiPC) into a replay buffer (Line 2-9) and reset environment. When
updating MiPC, we calculate the intrinsic reward ri\/“ (Line 11) and
use batch training to update all agents’ MiPC parameter through
loss function together:

Ma,b Mlb .0
t+1 t+l >

LY5(0) = Zb yrrltaxQ (sHl,a
a

t+1

(16)

. . 2
b Mab Mx,b, env,b Mi,b
—Q (st a; a; ,9)+rt + pr; ] ,

where f is the hyperparameter to weight intrinsic reward in micro
policy loss function (Line 12). When updating MaSC, we re-organize
the macro state sequence between the beginning and ending states
of a macro strategy within d}} time steps for each agent and calculate
TD loss by:
LMa (®n _ [rMa,n _ QMa (st a Ma,n ®n)
="t t
(17)

+Y mMax Man Q
t+d

2
Man, -,
o atgzo™)|
where rltwa’" is multi-step return in Eqn. (11) (Line 16-18). Finally,
we use loss (18) to update MaSC (Line 19):

LM = £y5(0M) + ALy (@),

where A is hyperparameter to weight macro loss function.
Correspondingly, the network inference complexity of HiMacMic
D RU'Z(L) DmDout

W W

(18)

during training can be expressed as O(X , where

X, /A denote the time of environment interaction and parallel run-
ners, respectively, D™, DU are the dimensions of input vector and
output vector of the w-th FC layers, respectively, and DSRU is the
dimension of GRU-cell in controllers [6].

5 EXPERIMENTAL RESULTS
5.1 Setup

We select four games for performance benchmarking where nine
scenarios are chosen to represent either known difficult or sparse
reward cases.

e Overcooked [44]: Two chefs (agents) collaborate to accom-
plish cooking tasks in a gridded kitchen. The task involves
subtasks like vegetable selection, cutting, plating, and de-
livery. Successfully completing the overall task yields an
environmental reward of 200, while completing each sub-
task earns a reward of 10. However, delivering the wrong
dish incurs a penalty of -5, and a time step penalty of -0.1 is
applied. The final score is used for evaluation purposes.

GREF [20]: Agents cooperate to score goals. When a goal is
scored or the maximum step limit is reached, the environ-
ment ends and resets. A reward of 100 is assigned for scoring
a goal. We consider two sparse reward scenarios: "keeper”



KDD ’23, August 6-10, 2023, Long Beach, CA, USA.

Hancheng Zhang, Guozheng Li, Chi Harold Liu, Guoren Wang, & Jian Tang

Table 1: Impact of loss coefficients A, f.

Overcooked

GRF

SMAC

SMAC-v2

A 0.01 0.03 0.05 0.1 0.2

0.01 005 0.1 02 03

A 0.001 0.005 0.01 0.015 0.03

0.01 0.015 0.02 0.025 0.03

0.01 118.1 118.2 69.47 97.47 83.65
0.03 151.2 210.6 191.3 72.67 37.60
0.05 195.8 234.6 201.5 90.41 87.05
0.1 162.7 174.4 186.6 153.5 113.7
0.2 102.6 103.8 87.20 89.31 53.20

0.01 0.434 0.451 0.454 0.479 0.473
0.1 0.341 0.481 0.606 0.588 0.580
0.3 0.645 0.722 0.832 0.785 0.605
0.5 0.705 0.738 0.741 0.783 0.618
0.8 0.402 0.311 0.336 0.276 0.165

0.01 0.756 0.781 0.839 0.734 0.619
0.05 0.813 0.887 0.903 0.788 0.694
0.1 0.845 0.907 0.935 0.861 0.745
0.2 0.726 0.880 0.883 0.847 0.752
0.5 0.707 0.726 0.735 0.781 0.613

0.1 0.676 0.711 0.685 0.614 0.625
0.15 0.631 0.702 0.723 0.715 0.716
0.2 0.682 0.701 0.776 0.712 0.634
0.25 0.681 0.704 0.753 0.721 0.699
0.3 0.608 0.641 0.635 0.635 0.612

Table 2: Impact of heatmap resolution and macro strategy deadline.

GRF | SMAC | SMAC-v2
resolution deadline resolution deadline resolution deadline
2 3 4 5 6 2 3 4 5 6 3 4 5 6 7
9 0.646 0.608 0.676 0.597 0.471 25 0.864 0.906 0.863 0.826 0.878 36 0.671 0.689 0.646 0.627 0.631
16 0.627 0.731 0.801 0.725 0.583 36 0.881 0.901 0.894 0.898 0.839 49 0.698 0.710 0.695 0.663 0.652
25 0.734 0.715 0.832 0.798 0.617 49 0.876 0.897 0.935 0.911 0.874 64 0.714 0.751 0.776 0.705 0.678
36 0.654 0.645 0.735 0.704 0.649 64 0.847 0.866 0.915 0.904 0.881 81 0.674 0.678 0.715 0.697 0.654
49 0.613 0.684 0.603 0.699 0.592 81 0.850 0.843 0.861 0.839 0.817 100 0.688 0.691 0.712 0.681 0.623

involves a confrontation between a few agents in front of
the goal, and "hard" represents a more challenging task. The
evaluation metric used is the winning rate over 100 rounds.
SMAC [36]: We choose three cases 6h_vs_8z, 2c_vs_64zg
and MMM2 as well-known super hard scenarios [36] that
need sufficient exploration and cooperation, where existing
method can not solve task well. Battle winning rate over 100
rounds is used for evaluation.

SMAC-v2 [9]: Known as much more challenging than SMAC,
agents on both sides have two types of random initial po-
sitions: opposite and surrounded. It adds a type of random
units. Taking Zerg as an example, there are 45%, 45% and
10% probabilities to initially generate Zergling, Hydralisk
and Baneing, respectively. In the experiment, we selected
the maps of Zerg, Protoss and Terran to test. Battle winning
rate over 100 rounds is used for evaluation.

In all the experiments, we use Pytorch 1.13.0 to implement Hi-
MacMic, and all the codes are run on a Ubuntu 18.04.4 LTS server
with 8 GeForce RTX 3090 graphic cards. By default, we take eight
million time steps to train all algorithms. If the scene is difficult
and cannot completely converge, we will extend the training time
steps to 15 million.

5.2 Hyperparameter Tuning

5.2.1 Impact of macro strategy/micro policy loss function coefficients
A, B: We first show the impact of hyperparameters in the reward and
loss function calculation related to training macro strategy/micro
policy. We set constant penalty ¢ = 0.2, while other parameters
follow [33, 34]. In GRF, SMAC and SMAC-v2 environment, we
take the average result of all selected scenarios. From Table 1, we
observe that appropriate selection of A, § achieves peak winning
rate. This is because the additional guidance from macro strategy
and intrinsic reward is insufficient when A, § is small. On the other
hand, large coefficients may bring too much influence on agents to
cause training instability, which may result in poor performance.

5.2.2  Impact of Heat map resolution and macro strategy deadline:
Next, we show the impact of heat map resolution and macro strategy
deadline, which is related to how to analyze and use environment

3244

information in both temporal and spatial dimensions. Since Over-
cooked is a grid game which cannot tune the heat map resolution,
we keep it as 25, while changing the resolution in GRF, SMAC and
SMAC-v2. We take the average result of all selected scenarios. From
Table 2, we observe that resolution in 5 X 5 = 25,7 X 7 = 49 and
8 X 8 = 64 with 4, 4, 5 maximum macro strategy deadline yields
the best winning rate. This is because the extracted spatiotemporal
information of macro strategy is insufficient when heat map res-
olution and maximum macro strategy deadline are small, and too
much fine-grained representation of the state and too long time
span may bring information redundancy, resulted in poor overall
performance.

5.3 Ablation Study

We conduct ablation experiments, by removing key modules pro-
posed in this paper:

e HiMacMic with synchronous deadline (SynDDL): Different
from HiMacMic using AsynDDL, we update the macro strate-
gies of all agents synchronously.

HiMacMic with simple heatmap (w. s-hm): Instead of opti-
mizing macro strategy by the hindsight heatmap according
to the success signal from environment, we remove discrimi-
nant func F in Eqn. (12) and sample trajectories of all agents
uniformly to build a simple heatmap.

HiMacMic w/o hm: We set A = 0 in Eqn. (18), to reflect
removing self imitating learning loss function based on heat
map.

HiMacMic w/o r;vﬁ: We only use heat map loss without in-
trinsic reward by setting f = 0 in Eqn. (16).

From Table 3, we see that HiMacMic with SynDDL obtains lower
result, which confirms that synchronous macro strategy is not suit-
able for all agents. On the contrary, our approach with AsyDDL
allows agents to flexibly adjust their macro strategies based on
their own observations to achieve better cooperation. When re-
moving self imitating learning loss function based heat map and
intrinsic reward, or using simple heatmap without hindsight, the
performance drops more than 5%, which confirms their benefits
of bringing spatiotemporal information to update macro strategy



HiMacMic: Hierarchical Multi-Agent Deep Reinforcement Learning with Dynamic Asynchronous Macro Strategy

Table 3: Ablation Study.

HiMacMic w. SynDDL w. s-hm w/o hm w/o rim

Overcooked 234.6 218.7 219.8 2135 198.4

GRF: keeper 0.869 0.793 0.702 0.670 0.634

GREF: hard 0.798 0.691 0.477 0.504 0.389

SMAC: 6h_vs_8z 0.851 0.754 0.719 0.679  0.683
SMAC: 2c_vs_64zg 0.969 0.891 0.857 0.861 0.886
SMAC: MMM2 0.985 0.947 0.925 0.901 0.897
SMAC-v2: zerg 5 _vs_5 0.793 0.734 0.731 0.702 0.695
SMAC-v2: protoss_5_vs_5 0.763 0.691 0.706 0.688 0.679
SMAC-v2: terran_5_vs_5 0.771 0.722 0.721 0.704  0.718

43 2 1 o

g3
oS
[] T E] 3 4 S
[
I o2
(™ o Ihin |
) - @& 0 10 20 30
; ;\gczmt i | | | | . 4 Time Step

(a) Heat map (b) Agent movement (c) Asynchronous deadline

Figure 3: Visualization of Overcooked with HiMacMic.

dynamically and using it to guide micro policy. When removing
all above modules, the rest becomes vanilla QMIX and results are
given in Section 5.5.

54

We show the macro strategy in four game scenarios. The heatmap
shows the spatial distribution of macro strategy position of agents
selected in the test phase. The darker the color, the higher the
number of choices.

Overcooked: As shown in Figure 3, agent 1 takes a tomato
then brings it to the knife for cutting, thus selecting the purple
box position as macro strategy. Meanwhile, agent 2 finishes cutting
vegetables and then takes the macro strategy advice to load it on
a plate. Figure 3(c) further shows the time-varying deadlines of
two agents, which reflects when/where to move from the vegetable
cutting area to the dish loading area, or from the vegetable picking
area to the cutting area, where the macro strategy may last for some
time before changing. Furthermore, we see that two agents’ macro
strategy deadlines may not always coincide, since their tasks are
not synchronized as well as their macro strategies.

GRF-keeper: As shown in Figure 4(a), when the heat map res-
olution is too low, agent 1 and 3 prefer to stay, letting agent 2 to
dribble into the penalty area alone. As another extremity, when the
heat map resolution is too high, the macro strategies of all agents
all point to a small scoring area right in front of the keeper (see
Figure 4(b)), so that the only defender can better position himself
to stop ball from the final shot. Figure 4(c) shows the optimal heat
map resolution 25, where we can clearly see a strategy is generated,
that agent 2 moves in front of the penalty area and completes a pass
(by selecting the orange box as macro strategy); then agent 1 first
moves to the right side to attract the opponent in flank, and passes
the ball to the goal and outflank to the keeper (by selecting the
green box as macro strategy); finally, agent 3 moves to the goal di-
rectly and complete an easy shot (by selecting the red box as macro
strategy). This is further confirmed by reading their time-varying

Macro Strategy Visualizations by HiMacMic

3245

KDD ’23, August 6-10, 2023, Long Beach, CA, USA.

6 5 4.3 2 1 0

G132 3456

(b) Heat map resolution = 49

nat Close Shot— ]

—— agent 3

i\

agent 2

A A\

\
\ i

N}
-

\

\

25

15 20
Time Step

(d) Asynchronous deadline of 3 agents.
Figure 4: Visualization of GRF: keeper with HiMacMic.

ix agents
are clusterd

876543210

012345678

(a) Heat map resolution = 16 (b) Heat map resolution = 81

agent 2
agent 5
4 agent 6
i
agent 4.
agént 3

6 5 4 3 2 1 0

“Fhgent 1

01 2 3 4 5 6

(c) Heat map resolution = 49 (optimal)

IS

i

.\j —

I\ | | | | | “ “‘

A [\ AN ANAWAWANA

AV RV BAYAVAVAVAUE!

FADAYOAWANA | APAAANAN A

1 \iy\'\/ WAV AL LN VN YN VNN
0 10

20
Time Step

agent 1 agent2 —— agent3 — agent4 agent 6

w

Deadline

N

(d) Asynchronous deadline of 6 agents.
Figure 5: Visualization of SMAC: 6h_vs_8z with HiMacMic.

deadlines in Figure 4(c). Agent 2 hosts an increasing deadline du-
ration (referring to ball carrying and passing) at the beginning,
and then keeps moving in the front of restricted area (i.e., d}=1).
Similar phenomenon is observed for agent 1 and 3, which show the
frequent macro strategy update.

SMAC-6h_vs_8z: As shown in Figure 5(a) and (b), due to inap-
propriate heat map resolution, agents are too dispersed or clustered,
which is difficult to concentrate fire or easily being surrounded.
Figure 5(c) shows the optimal resolution 49 where agents form a tri-
angular formation (blue box as macro strategy). Figure 5(d) further
shows the time-varying deadlines of six agents at the beginning
of 45 time steps, which reflects when/where to move in order to
better attack the enemy.

SMAC-v2-zerg_5_vs_5: As shown in Figure 6(a), due to inap-
propriate heat map resolution, agents are too dispersed where they



KDD ’23, August 6-10, 2023, Long Beach, CA, USA.

agent2

Gathered on two flanks

9 87 6543210

012 3456 7

76543210

Gather troops quic

(c) Heat map resolution = 64 (optimal)

v

N/ agent 1’ agent2 | —— dgent3 —— agentd

S

Deadline

H N W

Time Step
(d) Asynchronous deadline of 5 agents.
Figure 6: Visualization of SMAC-v2: zerg_5_vs_5 with HiMacMic.

fight individually. Agent 1 and 2 fight at the top of the map, while
agent 3 moves down to battle with agent 4 and 5. However, a good
strategy should build a more powerful group rather than form-
ing multiple battle zones. On the contrary, when the resolution is
too high, agents are inclined to form a group right after the game
start so that they are surrounded or annihilated by the enemy (e.g.,
agents 2, 3 and 4 gather in the middle thus quite vulnerable to range
damage caused by enemy Baneling units through self-explosion;
see Figure 6(b)). Figure 6(c) shows the optimal resolution we found
where the agent 1 and 2 move down quickly and gather with others
in the middle, to form a local advantage before the enemy’s upper
right unit arrives. Meanwhile, agents fight against the enemy in
the battle zone at the bottom left of the map, but not too close as
in Figure 6(b). Instead, they keep relatively scattered in the small
battle zone and retain the possibility of attracting the enemy by
moving towards the border of the map. Figure 6(d) further shows
the time-varying deadlines of five agents at the beginning of 35
time steps, which confirms when/where to move in order to better
attack the enemy.

5.5 Comparing with 10 Baselines

We compare HiMacMic with 10 state-of-the-art solutions:

e MADRL for only micro policy, including value-based method
VDN [38], OQMIX [34], QTRAN [37], OW-QMIX [33], CW-
QMIX [33] and QPLEX [43], as well as policy-based method
MAPPO [50] and FACMAC [30].

3246

Hancheng Zhang, Guozheng Li, Chi Harold Liu, Guoren Wang, & Jian Tang

Table 4: Computational complexity of all methods.

Method Time Cost (ms) Graphic Card Mem. Usage (GB)
HiMacMic 1.328 1.981
VDN [38] 1.176 1.383
QMIX [34] 1.267 1.503

QTRAN [37] 1.437 2.679
OW-QMIX [33] 1.389 2541
CW-QMIX [33] 1.405 2.673

QPLEX [43] 1.512 1.897

MAPPO [50] 1.226 1.259
FACMAC [30] 1.364 1.321

RODE [45] 1.306 1.921
MASER [17] 1337 1.329

e MADRL for micro policy with hierarchical control, including
RODE [45], and MASER [17].

Figure 7 shows the training curves with 8/15 million time steps.
We see that HiMacMic converges much faster and gets higher fi-
nal results. Especially in the most difficult SMAC scenario (see
Figure 7 (d)) and SMAC-v2 scenario (see Figure 7 (g)), HiMacMic
improves the best performance by around 10%. In GRF scenarios
(see Figure 7(b) and (c)), achieves a lot better performance compared
with QPLEX. This result reflects the benefits of bringing macro strat-
egy and micro policy together in a hierarchical MADRL framework.
Also, by introducing heat map based self imitation learning, the
macro strategy updates rapidly and efficiently, to allow agents to
fully explore environment with better group cooperations.

HiMacMic also shows a good degree of algorithm stability and
adaptability to different environments of the same game. RODE
pre-trained different roles to make hierarchical decisions at the
beginning and did not change them afterwards, thus performing
bad in GRF and SMAC-v2 (see Figure 7(b-c) and Figure 7(g-i)).
MASER generated subgoals only from replay buffer, which are
insufficient spatiotemporally, thus showing weak performance in
Overcookded (see Figure 7(a)) and GRF: hard (see Figure 7(c)) and
fail to solve SMAC: 6h_vs_8z (see Figure 7(d)) and 2c_vs_64zg (see
Figure 7(e)). This confirms the benefits brought by HiMacMic to
make macro strategic decisions dynamically and asynchronously,
as well as environment exploration by intrinsic reward.

Figure 7(j)-(I) show the training curves with 15 million time
steps in the most challenging SMAC-v2 environment with conical
field of view. As said earlier in SMAC-v2, there are three major
changes: using random start positions, restricting the agent field
of view and shooting range to a cone (where the agent can no
longer have a circular view, but needs to select the direction of
observation through 12 actions and obtain local observation). It
can be seen that our method outperforms all baselines by more
than 3%. This confirms the benefits brought by HiMacMic to make
macro strategic decisions dynamically and asynchronously, as well
as environment exploration by intrinsic reward.

Finally, computational complexity (both time cost and graphic
card memory usage) is given in Table 4. We observe that the running
time to produce actions in a time step by HiMacMic is similar to that
of other baselines, and within the same order of magnitude. The
graphic card memory usage of HiMacMic is only slightly higher
than others but lower than QTRAN and Weighted QMIX, given the
benefits it brings.



HiMacMic: Hierarchical Multi-Agent Deep Reinforcement Learning with Dynamic Asynchronous Macro Strategy

— HiMacMic — o
o — VN TP 54
5200 —— quix Tog
= QTRAN 2
& 150 — ow-amix -
= ow-amix £
8 100 — PLEX s
=19 — rope B o4
S _ — Facuac iy
5 50 — mapro <02
o} — MASER %
= o 3 J
=00
o 2 4 6 8 o 2 4 6 8
Time Steps (million) Time Steps (million)
(a) Overcooked (b) GRF: keeper
@10 @10
54 54
208 208
£ £
E 0.6 E 0.6
= =
B o4 B o4
= =
o2 o2
3 3
=00 =00
o 2 4 6 8 o 2 4 6 8
Time Steps (million) Time Steps (million)
(e) SMAC: 2¢_vs_64zg (f) SMAC: MMM2
) )
g 08 g 0.150
206 20125
= =
£ £ 0.100
=
0.4
3 3 0075
L 02 F 0.050
c c
5} 5}
3 5 0.025
=00 = 0.000

00 25 50 75 100

Time Steps (million)

(j) SMAC-v2_conic_fov:
zerg_5_vs_5

125 150

0

2 4 6
Time Steps (million)

(i) SMAC-v2: terran_5_vs_5

KDD ’23, August 6-10, 2023, Long Beach, CA, USA.

2 2
54 54
Xos Xos
= =
£ £
Eos Eos
= =
P04 P04
o o
= =
§o2 So2
° °
3 3
=00 =00
o 2 4 6 8 o 2 4 6 8
Time Steps (million) Time Steps (million)
(c) GRF: hard (d) SMAC: 6h_vs_8z
Q Q
Fos 2os
14 14
=) =)
Sos Eos
= £
£ £
% 04 % 04
7 7
@ @
= =
8% 5%
k] k]
3 3
=00 Zo0 £
0 2 4 6 8 0 2 4 6 8
Time Steps (million) Time Steps (million)
(g) SMAC-v2: zerg 5 vs_5 (h) SMAC-v2: protoss_5_vs_5
2 025 o
g £ o020
o 020 [=]
£ £
E 015 E 0.15
= =
g 010 g 0.10
= =
8 o005 005 .
© ]
2 2 />
= 0.00 =000
25

5.0
Time Steps (million)

5.0 75 10.0
Time Steps (million)

(k) SMAC-v2_conic_fov:
protoss_5_vs_5

125 150 75 100 125

(I) SMAC-v2_conic_fov:
terran_5_vs_5

Figure 7: Experiment results on Overcooked, GRF, SMAC and SMAC-v2.

Table 5: Large-scale and practical experimental results.

Method Vehicle Dispatch (reward) SMAC-v2: zerg_20_vs_20
HiMacMic 109.17 0.6931
VDN [38] 10.54 0.3565
OMIX [34] 101.35 0.6091

QTRAN [37] -26.13 0.2627
OW-QMIX [33] 102.64 05143
CW-QMIX [33] 97.09 05625

QPLEX [43] -14.92 0.3242

MAPPO [50] 103,57 05018
FACMAC [30] -20.14 0.4921

RODE [45] -29.71 0.1803
MASER [17] 14.19 0.6127

5.6 Large-scale and Practical Experiments

We designed a vehicle dispatching simulator based on real-world
ride-hailing datasets [1]. Similar to [40], we rasterized the latitude
and longitude range covered the data into a 1010 square grid.
Then, we obtained an initial distribution of order distribution and
available taxis based on the average value of the selected data in
a time period between 18:00 and 19:00. Based on the initial order
distribution and taxi distribution, we initialized 120 orders and
110 taxis in the environment in proportion, where each taxi is an
independent agent unit. Our objective is to minimize passenger
waiting time. When a passenger and a vehicle occupy the same grid,
we consider them to be matched, and the agent completes the task.
The episode ends when all agents have completed their matches.
Agents have six action options: move (up, down, left, right), stay,
and finish. An agent’s observation is a local view that includes
the number of cars and orders in nearby cells. Each time step, an
agent receives a step penalty of -0.01 multiplied by the remaining
passenger count n. When an agent successfully completes a subtask

3247

(picks up a passenger), it receives a subtask finished reward of 0.2.
When all agents complete the matching process, they receive an
all finish reward of 100. The multi-agent system shares a global
reward, and there is no separate reward function designed for each
agent in the environment. The results demonstrate that HiMacMic
achieves higher reward values, effectively minimizing the overall
waiting time for passengers.

When increasing number of agents in the SMAC-v2-zerg envi-
ronment, with a 20vs20 matchup, from Table 5, we see that even
though the scenario became more complex, HiMacMic still main-
tained its advantage.

6 CONCLUSION

In this paper, we propose HiMacMic, a hierarchical MADRL frame-
work with both macro strategy and micro policy. Temporally, Hi-
MacMic introduced an asynchronous deadline driven dynamic
decision-making process to update macro strategies of all agents
flexibly, and spatially, time-varying macro strategies are improved
by the positional heat map. Then, low-level micro policies are gener-
ated using an intrinsic reward to better complete tasks as a cooper-
ation. Extensive results on Overcooked, GRF, SMAC and SMAC-v2
games show the effectiveness and adaptability of HiMacMic when
compared with 10 baselines. We also find the best hyperparameters,
and visualize the agent trajectories to better understand the macro
strategy and micro policy generated by HiMacMic.

ACKNOWLEDGMENTS

This work has been supported by National Natural Science Foun-
dation of China (No. U21A20519 and 61772072). Corresponding
author: Guozheng Li.



KDD ’23, August 6-10, 2023, Long Beach, CA, USA.

REFERENCES

[1] 2015. ECML/PKDD 15: Taxi Trajectory. https://www.kaggle.com/competitions/

[2

3

[10

[11

[12

[13

[14

[15

[16

[17

[18

[19

[20

[21

[22

[23

[24

[25

[26

—

]

]

]
]

]

]

]

]

]

pkdd- 15-predict-taxi-service-trajectory-i/data. Accessed on 6 April 2023.
Sanjeevan Ahilan and Peter Dayan. 2019. Feudal Multi-Agent Hierarchies for
Cooperative Reinforcement Learning. CoRR abs/1901.08492 (2019).

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, OpenAlI Pieter Abbeel, and Wojciech
Zaremba. 2017. Hindsight Experience Replay. In NeurIPS’17, Vol. 30. 5048-5058.
Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch.
2018. Emergent Complexity via Multi-Agent Competition. In ICLR’18.

André Biedenkapp, Raghu Rajan, Frank Hutter, and Marius Lindauer. 2021. Tem-
poRL: Learning When to Act. In ICML’21, Vol. 139. 914-924.

Junyoung Chung, Caglar Giilgehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
In NIPS’14 Deep Learning and Representation Learning Workshop.

Cédric Colas, Pierre-Yves Oudeyer, Olivier Sigaud, Pierre Fournier, and Mohamed
Chetouani. 2019. CURIOUS: Intrinsically Motivated Modular Multi-Goal Rein-
forcement Learning. In ICML’19, Vol. 97. 1331-1340.

Peter Dayan and Geoffrey E. Hinton. 1992. Feudal Reinforcement Learning. In
NIPS’92, Vol. 5. 271-278.

Benjamin Ellis, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob N. Foerster, and Shimon Whiteson. 2022. SMACv2: An Improved Bench-
mark for Cooperative Multi-Agent Reinforcement Learning. CoRR abs/2212.07489
(2022).

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. 2019.
Diversity is All You Need: Learning Skills without a Reward Function. In ICLR’19.
Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. 2018. Automatic
Goal Generation for Reinforcement Learning Agents. In ICML’18, Vol. 80. 1514~
1523.

Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli,
and Shimon Whiteson. 2018. Counterfactual Multi-Agent Policy Gradients. In
AAATI'18. 2974-2982.

Yiming Gao, Bei Shi, Xueying Du, Liang Wang, Guangwei Chen, Zhenjie Lian,
Fuhao Qiu, GUOAN HAN, Weixuan Wang, Deheng Ye, Qiang Fu, Wei Yang, and
Lanxiao Huang. 2021. Learning Diverse Policies in MOBA Games via Macro-
Goals. In NeurIPS’21, Vol. 34. 16171-16182.

Sven Gronauer and Klaus Diepold. 2022. Multi-agent deep reinforcement learning:
a survey. Artif. Intell. Rev. 55, 2 (2022), 895-943.

Nico Giirtler, Dieter Biichler, and Georg Martius. 2021. Hierarchical Reinforce-
ment Learning with Timed Subgoals. In NeurIPS’21, Vol. 34. 21732-21743.
Xiaotian Hao, Weixun Wang, Hangyu Mao, Yaodong Yang, Dong Li, Yan Zheng,
Zhen Wang, and Jianye Hao. 2022. API: Boosting Multi-Agent Reinforcement
Learning via Agent-Permutation-Invariant Networks. CoRR abs/2203.05285
(2022).

Jeewon Jeon, Woojun Kim, Whiyoung Jung, and Youngchul Sung. 2022. MASER:
Multi-Agent Reinforcement Learning with Subgoals Generated from Experience
Replay Buffer. In ICML’22, Vol. 162. 10041-10052.

Landon Kraemer and Bikramjit Banerjee. 2016. Multi-agent reinforcement learn-
ing as a rehearsal for decentralized planning. Neurocomputing 190 (2016), 82-94.
Tejas D. Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum.
2016. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstrac-
tion and Intrinsic Motivation. In NIPS’16. 3675-3683.

Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michal Zajac, Olivier Bachem, Lasse
Espeholt, Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet,
and Sylvain Gelly. 2020. Google Research Football: A Novel Reinforcement
Learning Environment. In AAAI’20. 4501-4510.

Jiahui Li, Kun Kuang, Baoxiang Wang, Furui Liu, Long Chen, Fei Wu, and Jun Xiao.
2021. Shapley Counterfactual Credits for Multi-Agent Reinforcement Learning.
In KDD’21. 934-942.

Chi Harold Liu, Zheyu Chen, Jian Tang, Jie Xu, and Chengzhe Piao. 2018. Energy-
Efficient UAV Control for Effective and Fair Communication Coverage: A Deep
Reinforcement Learning Approach. IEEE J. Sel. Areas Commun. 36, 9 (2018),
2059-2070.

Chi Harold Liu, Xiaoxin Ma, Xudong Gao, and Jian Tang. 2020. Distributed
Energy-Efficient Multi-UAV Navigation for Long-Term Communication Coverage
by Deep Reinforcement Learning. IEEE Trans. Mob. Comput. 19, 6 (2020), 1274—
1285.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. 2017.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In
NeurIPS’17, Vol. 30. 6379-6390.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor
Mordatch. 2017. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive
Environments. In NeurIPS’17, Vol. 30. 6379-6390.

Shuang Luo, Yinchuan Li, Jiahui Li, Kun Kuang, Furui Liu, Yunfeng Shao, and
Chao Wu. 2022. S2RL: Do We Really Need to Perceive All States in Deep Multi-
Agent Reinforcement Learning?. In KDD’22. 1183-1191.

3248

[27

[28

[29

@
=

(31

[32

[33

[34

[35

[36

(37]

[38

%
20,

[40

[41

[42]

=
&

[44

[45

[46

[47

(48

N
)

[50

[51

Hancheng Zhang, Guozheng Li, Chi Harold Liu, Guoren Wang, & Jian Tang

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nat. 518, 7540 (2015),
529-533.

Frans A. Oliehoek and Christopher Amato. 2016. A Concise Introduction to
Decentralized POMDPs. Springer.

Seongmin A Park, Douglas S Miller, and Erie D Boorman. 2021. Inferences on a
multidimensional social hierarchy use a grid-like code. Nature neuroscience 24, 9
(2021), 1292-1301

Bei Peng, Tabish Rashid, Christian Schroder de Witt, Pierre-Alexandre Kamienny,
Philip H. S. Torr, Wendelin Boehmer, and Shimon Whiteson. 2021. FACMAC:
Factored Multi-Agent Centralised Policy Gradients. In NeurIPS’21, Vol. 34. 12208—
12221.

Xinghua Qu, Yew Soon Ong, Abhishek Gupta, Pengfei Wei, Zhu Sun, and Zejun
Ma. 2022. Importance Prioritized Policy Distillation. In KDD’22. 1420-1429.
Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. 2018. Modeling
Others using Oneself in Multi-Agent Reinforcement Learning. In ICML’18, Vol. 80.
4254-4263.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. 2020.
Weighted QMIX: Expanding Monotonic Value Function Factorisation for Deep
Multi-Agent Reinforcement Learning. In NeurIPS 20, Vol. 33. 10199-10210.
Tabish Rashid, Mikayel Samvelyan, Christian Schroder de Witt, Gregory Farquhar,
Jakob N. Foerster, and Shimon Whiteson. 2018. QMIX: Monotonic Value Function
Factorisation for Deep Multi-Agent Reinforcement Learning. In ICML’18, Vol. 80.
4292-4301.

Stuart Russell and Andrew Zimdars. 2003. Q-Decomposition for Reinforcement
Learning Agents. In ICML’03. 656-663.

Mikayel Samvelyan, Tabish Rashid, Christian Schréder de Witt, Gregory Farquhar,
Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob N.
Foerster, and Shimon Whiteson. 2019. The StarCraft Multi-Agent Challenge. In
AAMAS’19. 2186-2188.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Hostallero, and Yung Yi. 2019.
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent
Reinforcement Learning. In ICML 19, Vol. 97. 5887-5896.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
cius Flores Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z.
Leibo, Karl Tuyls, and Thore Graepel. 2018. Value-Decomposition Networks
For Cooperative Multi-Agent Learning Based On Team Reward. In AAMAS’18.
2085-2087.

Richard S. Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and
Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning.
Artif. Intell. 112, 1-2 (1999), 181-211.

Xiaocheng Tang, Fan Zhang, Zhiwei Qin, Yansheng Wang, Dingyuan Shi,
Bingchen Song, Yongxin Tong, Hongtu Zhu, and Jieping Ye. 2021. Value Function
is All You Need: A Unified Learning Framework for Ride Hailing Platforms. In
KDD °21. 3605-3615. https://doi.org/10.1145/3447548.3467096

Runzhe Wan, Xinyu Zhang, and Rui Song. 2021. Multi-Objective Model-Based
Reinforcement Learning for Infectious Disease Control. In KDD’21. 1634-1644.
Hao Wang, Chi Harold Liu, Zipeng Dai, Jian Tang, and Guoren Wang. 2021.
Energy-Efficient 3D Vehicular Crowdsourcing for Disaster Response by Dis-
tributed Deep Reinforcement Learning. In KDD’21. 3679-3687.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. 2021.
QPLEX: Duplex Dueling Multi-Agent Q-Learning. In ICLR’21.

Rose E. Wang, Sarah A. Wu, James A. Evans, Joshua B. Tenenbaum, David C.
Parkes, and Max Kleiman-Weiner. 2020. Too Many Cooks: Coordinating Multi-
agent Collaboration Through Inverse Planning. In AAMAS’20. 2032-2034.
Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and
Chongjie Zhang. 2021. RODE: Learning Roles to Decompose Multi-Agent Tasks.
In ICLR21.

Yuchen Xiao, Weihao Tan, and Christopher Amato. 2022. Asynchronous Actor-
Critic for Multi-Agent Reinforcement Learning. In NeurIPS’22.

Jiachen Yang, Igor Borovikov, and Hongyuan Zha. 2020. Hierarchical Cooperative
Multi-Agent Reinforcement Learning with Skill Discovery. In AAMAS’20. 1566~
1574.

Jiachen Yang, Alireza Nakhaei, David Isele, Kikuo Fujimura, and Hongyuan
Zha. 2020. CM3: Cooperative Multi-goal Multi-stage Multi-agent Reinforcement
Learning. In ICLR’20.

Rui Yang, Jie Wang, Zijie Geng, Mingxuan Ye, Shuiwang Ji, Bin Li, and Feng Wu.
2022. Learning Task-Relevant Representations for Generalization via Character-
istic Functions of Reward Sequence Distributions. In KDD’22. 2242-2252.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre M. Bayen, and Yi
Wu. 2021. The Surprising Effectiveness of MAPPO in Cooperative, Multi-Agent
Games. CoRR abs/2103.01955 (2021).

Bo Zhang, Chi Harold Liu, Jian Tang, Zhiyuan Xu, Jian Ma, and Wendong Wang.
2018. Learning-Based Energy-Efficient Data Collection by Unmanned Vehicles
in Smart Cities. IEEE Trans. Ind. Informatics 14, 4 (2018), 1666-1676.





