
HiMacMic: Hierarchical Multi-Agent Deep Reinforcement
Learning with Dynamic Asynchronous Macro Strategy

Hancheng Zhang
Beijing Inst. of Tech.

Beijing, China
hancheng@bit.edu.cn

Guozheng Li
Beijing Inst. of Tech.

Beijing, China
guozheng.li@bit.edu.cn

Chi Harold Liu
Beijing Inst. of Tech.

Beijing, China
chiliu@bit.edu.cn

Guoren Wang
Beijing Inst. of Tech.

Beijing, China
wanggr@bit.edu.cn

Jian Tang
Midea Group
Beijing, China

tangjian22@midea.com

ABSTRACT

Multi-agent deep reinforcement learning (MADRL) has been widely

used in many scenarios such as robotics and game AI. However,

existing methods mainly focus on the optimization of agents’ micro

policies without considering the macro strategy. As a result, they

cannot perform well in complex or sparse reward scenarios like

the StarCraft Multi-Agent Challenge (SMAC) and Google Research

Football (GRF). To this end, we propose a hierarchical MADRL

framework called “HiMacMic" with dynamic asynchronous macro

strategy. Spatially, HiMacMic determines a critical position by using

a positional heat map. Temporally, the macro strategy dynamically

decides its deadline and updates it asynchronously among agents.

We validate HiMacMic in four widely used benchmarks, namely:

Overcooked, GRF, SMAC and SMAC-v2 with nine chosen scenarios.

Results show that HiMacMic not only converges faster and achieves

higher results than ten existing approaches, but also shows its

adaptability to different environment settings.

CCS CONCEPTS

• Computing methodologies→Multi-agent reinforcement

learning.

KEYWORDS

Multi-agent deep reinforcement learning, macro strategy

ACM Reference Format:

Hancheng Zhang, Guozheng Li, Chi Harold Liu, Guoren Wang, and Jian

Tang. 2023. HiMacMic: Hierarchical Multi-Agent Deep Reinforcement Learn-

ing with Dynamic Asynchronous Macro Strategy. In Proceedings of the 29th

ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD

’23), August 6–10, 2023, Long Beach, CA, USA. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3580305.3599379

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00
https://doi.org/10.1145/3580305.3599379

or

Z1

Z2H3

H5

Z4

Z1

Z2 H3

H5Z4

Micro
policy

Macro strategy

Fix/Learnable

Z

H

B

Zergling

Hydralisk

Baneling

or

(a) Micro policy only without any macro strategy.

H3
H4

H1

H2

H4

H3
H2

H1

(b) Macro strategy with syn-
chronous decision making.

H3
H1

H2
Z4

Z4

H1

H2

Z4

(c) Macro strategy with artificial and fixed rules.

Figure 1: Motivation of this paper by examples in SMAC-v2

zerg_5_vs_5 scenario.

1 INTRODUCTION

Multi-agent deep reinforcement learning (MADRL) has shown po-

tentials in various applications such as life andmedical sciences [41],

robotics [22, 23, 30, 42, 49, 51], and game AI [12, 13, 25, 27, 31]. In

order to solve the challenge of optimal cooperations among agents,

existing solutions [16, 21, 26, 33, 34, 37, 43] mainly used centralized

training decentralized execution (CTDE [18]) pattern by assign-

ing a global reward [28]. However, these approaches primarily

focus on micro policies (i.e., actions at each time step), lacking

decision-making at the macro strategic level. This lead to possible

discoordination among agents or suboptimal policies in challenging

scenarios [14, 36, 47], such as 6h_vs_8z in SMAC [36], zerg_5_vs_5

in SMAC-v2 [9], academy_3_vs_1_with_keeper (or simply keeper)

or academy_counterattack_hard (or simply hard) in GRF [20].

Take the zerg_5_vs_5 scenario in SMAC-v2 as an example, as

shown in Figure 1(a), if agents only consider the micro-operations,

then they prefer to fight against their own battle individually, by

selecting the first enemy found in their respective field of vision and

attack range without integrity. However, a good high-level macro

3239

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580305.3599379&domain=pdf&date_stamp=2023-08-04

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Hancheng Zhang, Guozheng Li, Chi Harold Liu, Guoren Wang, & Jian Tang

strategy might be gathering together to fire to destroy enemy units,

rather than in three disconnected battle zones. Despite the fact

that curiosity-based auxiliary rewards [7] and goal-conditioned

hierarchical designs [3, 11] improved micro policy and achieved

the task-level understanding in single-agent settings, they cannot

be well applied to multiple agents directly. This is because that, on

one hand, if multiple agents share the same macro strategy, they

need to be trained and executed in a centralized manner, which

may not be feasible in practice; on the other hand, if each agent

adopts the macro strategy in a decentralized training and decentral-

ized execution (DTDE) pattern without centralized coordination,

agents will face the challenge brought by the impact of the unstable

environment during agent interactions.

Along the direction of CTDE, existing works relied on expert

knowledge in macro strategy design. Methods [17, 45, 47] stipulated

that agents share the same manually defined macro strategy dura-

tion. In other words, they idealized the macro strategy among mul-

tiple agents into a synchronous decision-making process. However,

it is impractical by enforcing agents to wait for others to terminate

and communicate with each other. As shown in Figure 1(b), Hy-

dralisk (denoted as H) H3 and H4 will soon destroy enemy H4, but

H1 and H2 are still in the process of attacking enemy H2. Given the

fact that the macro strategies of multiple agents are synchronous,

there will be contradictions and may lead to sub-optimal results. In

practice, cooperation of multiple agents should be asynchronous.

In this case, units H3 and H4 better choose a new strategy to attack

enemies H1 and H3 without waiting for their alliance H1 and H2.

Furthermore, although [46] allowed agents to select macro strategy

asynchronously, it fixed it as an established rule. As shown in Fig-

ure 1(c), it designed macro strategies with different time lengths of a

sequence of actions. The agent independently and asynchronously

selects the original actions and manually defines macro strategies.

Inspired by human players, when facing a combat-attacking enemy

Zergling (denoted as Z) Z4 and H1, a long-range unit, can use the

defined kiting strategy. That is, to attack and move back to pull

more space alternatively. However, a better strategy might be to

directly destroy the enemy units with a small amount of blood and

then focusing on the fire to destroy the remaining units on the right

hand side of the enemy, rather than mechanically implementing

the established strategy which results in unnecessary movement

and time loss. Furthermore, it is not convenient to adapt established

strategy to multiple types of agents (such as zergling, hydralisk,

baneling with random proportion) and flexibly applied to different

scenarios. Therefore, there lacks of a method that can guide micro

policies based on asynchronous macro strategy, where the latter

can dynamically optimize and update itself.

In this paper, we propose a hierarchical MADRL framework

called “HiMacMic", and its contributions are:

• We propose a hierarchical MADRL architecture called Hi-

MacMic, where agents are able to decide when and where

to perform the specific micro policy, navigated by the spa-

tiotemporal macro strategy.

• We propose a macro strategy deadline generation approach

by controller networks, to achieve dynamic and asynchro-

nous high-level strategy guidance of all agents and is adapt-

able to different tasks.

• We propose a positional heat map from successful past expe-

riences to train the macro strategy, and an intrinsic reward

mechanism by measuring the Manhattan distance between

predicted positions from macro strategy and agents’ actual

positions to guide micro policy movement, to achieve higher

sample efficiency and cooperation in complex and sparse

reward scenarios.

• We evaluate HiMacMic in four common benchmarks, in-

cluding Overcooked, GRF, SMAC and SMAC-v2. Empiri-

cal results demonstrate that HiMacMic achieves both faster

convergence and better final results over 10 state-of-the-art

MADRL baselines. A complete set of ablation studies as well

as trajectory visualization are also given.

2 RELATEDWORK

2.1 MARL with Only Micro Policy

Multi-agent reinforcement learning (MARL) consists of cooper-

ative [12, 48], competitive [4], and mixed settings [24, 32]. The

main challenge lies in assigning credit between the entire team

and individual agents to learn micro policies. Early attempts [35] at

value function factorization required expert knowledge for suitable

per-agent team reward decomposition. Furthermore, some meth-

ods [14, 42] adopted DTDE pattern and directly regarded other

agents as part of the environment that adopts a single agent algo-

rithm to train all agents together. Due to the lack of global informa-

tion, they cannot effectively address the environmental instability

issue caused by agent-environment interaction, leading to subpar

performance.

Following the CTDE paradigm [28], MADRL has made remark-

able progress [36] recently. For example, VDN [38] decomposed

the joint Q-value function into a sum of local utility functions and

used it to select action greedily. QMIX [34] used general mono-

tonic functions to decompose the joint Q-value function into a

sum of local value functions. QTRAN [37] proposed IGM condition

and mapped the joint value function to a new function that is de-

composed to each agent to reduce the strong constraint of QMIX

on monotonicity. Weighted-QMIX [33] put forward two weighted

mixing methods, centrally-weighted and optimistically-weighted,

which achieved better results in fitting IGM conditions, especially

in the grid world environment. QPLEX [43] used duplex dueling

network to avoid the inaccurate fitting of monotonic network at

the peak reward. FACMAC [30] used a centralized policy gradient

estimator without monotonicity constraint, to improve the micro

policy in continuous action space. However, these methods focused

on micro policy actions in each time step to seek cooperations with

dense rewards, and lacked consideration of cooperative decisions

from the perspective of macro strategy.

2.2 Hierarchical MARL with Macro Strategy

A number of approaches to single-agent hierarchical reinforce-

ment learning have been suggested, including goal-reach approach

(e.g., H-DQN [19]), multi-level control (e.g., Feudal RL [8]), options

framework [39], skill based method [10], etc. These approaches are

conducive to the decomposition of complex problems from a macro

strategy perspective, guiding the micro policy to complete actions

according to certain strategies.

3240

HiMacMic: Hierarchical Multi-Agent Deep Reinforcement Learning with Dynamic Asynchronous Macro Strategy KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

Migrated directly from single agent approaches, FMH [2] applied

Feudal RL [8] to multi-agent environments. HSD [47] introduced a

single agent skill-based method [10] through supervised learning

and thereby promoting skill discovery. RODE [45] used a clustering

method to generate a fixed number of invariant action space groups

as roles assigned to agents, and then selected actions according to

roles. MASER [17] generated subgoals from experience replay buffer

based on Q-function estimate, and used subgoals to guide agents

complete tasks hierarchically. However, these methods required

that the intervals to make macro strategies between all agents are

synchronized and also fixed based on human experiences. That is,

agents need to wait for others to complete their macro strategies,

and interval to make the next macro strategy is fixed that cannot

be modified dynamically during training process.

On the other hand, Mac-CAC [46] also emphasized that syn-

chronizing decisions across multiple agents in realistic settings is

problematic. Ideally in real life, agents should train and execute

asynchronously. In this way, macro strategy temporally extends

micro policy that can take different amounts of time based on the

environment situation. Unfortunately, they required themacro strat-

egy as a fixed path planning algorithm that cannot be modified, for

the reason of current policy gradient methods are not applicable in

asynchronous settings. In summary, existing macro strategies can-

not be flexibly and automatically tuned according to the dynamic

change of the underlying environment’s spatiotemporal informa-

tion, thus resulting in unsatisfactory overall performance.

3 PRELIMINARIES

We consider a fully cooperative task with 𝑁 agents denoted as

N � {1, 2, . . . , 𝑛, . . . , 𝑁 } under a Dec-POMDP setting [28], as a

tuple < S,A,Z, 𝑟 , 𝑃,𝑂, 𝑁 ,𝛾 >. S is the finite set of global states,

A is the set of joint action space,Z is the set of joint observations,

𝑟 is the joint reward function shared among all agents, 𝑃 is the

transition function specifying the state transition probabilities, 𝑂
is the observation function, and 𝛾 is the discount factor.

Since the joint action and observation space grows exponentially

as the number of agents increases, it is challenging to use joint

action-value function to train an MADRL method directly. Recent

studies [37] tried to find the factorizable cooperation task according

to IGM condition, which showed promising results in complex

environment with many agents and large state-action space. As

shown in Eqn. (1), each agent selects a greedy action according to

their individual action-value functions in a decentralized fashion,

making it possible to use the unique global reward to optimize the

multi-agent cooperation problem.

argmax
𝒂𝑡

𝑄 ttl (𝝉𝑡 , 𝒂𝑡) =

������
argmax𝑎1𝑡

𝑄1
(
𝜏1𝑡 , 𝑎

1
𝑡

)
...

argmax𝑎𝑁𝑡
𝑄𝑁

(
𝜏𝑁𝑡 , 𝑎𝑁𝑡

)
�����	
, (1)

where 𝑡 is the time step in an episode 𝑖 � {1, . . . , 𝑡, . . . ,𝑇 } and 𝝉𝑡 is
joint action observation histories, and 𝒂𝑡 is the joint action for all

agents at time step 𝑡 .
In the CTDE regime, the mixing network is introduced to merge

all individual Q-values into 𝑄 ttl as:

𝑄 ttl (𝝉𝑡 , 𝒂𝑡 , 𝑠𝑡) = 𝑓 mix
(
𝑄𝑛 (

𝜏𝑛𝑡 , 𝑎
𝑛
𝑡
)
|𝑁𝑛=1, 𝑠𝑡

)
, (2)

where 𝑓 mix represents different mixing functions. QMIX [34] pro-

posed a monotonicity function as one of the most widely used:

𝜕𝑄 ttl (𝝉𝑡 , 𝒂𝑡 , 𝑠𝑡)

𝜕𝑄𝑛
(
𝜏𝑛𝑡 , 𝑎

𝑛
𝑡 , 𝑠𝑡

) ≥ 0, ∀𝑛 ∈ N , 𝑡 . (3)

Then the micro policy network of multiple agents is trained with

TD loss:

LTD =
∑

𝑏

[(
𝑦ttl,𝑏𝑡 −𝑄 ttl (𝝉𝑏𝑡 , 𝒂

𝑏
𝑡 , 𝑠

𝑏
𝑡)
)2]

, (4)

where 𝑏 ∈ B is the batch index and 𝐵 is the batch size of transitions

sampled from a replay buffer.𝑦ttl𝑡 is the target value denoted as𝑦ttl𝑡 =
𝑟𝑡 + 𝛾 max𝒂𝑡+1 𝑄

ttl (𝝉𝑡+1, 𝒂𝑡+1, 𝑠𝑡+1;𝜃−), and 𝜃− is the parameter of

the target network.

4 PROPOSED METHOD: HIMACMIC

We propose HiMacMic, consisted of four modules: macro strategy

controller (MaSC), micro policy controller (MiPC), high-level mix-

ing network trained with additional heap map loss, and low-level

mixing network trained with intrinsic reward, as shown in Figure 2.

First, we use MaSC to generate the macro strategy 𝑎Ma,𝑛
𝑡 :

𝑎Ma,𝑛
𝑡 = (𝑔𝑛𝑡 , 𝑑

𝑛
𝑡) = MaSC(𝑜𝑛𝑡 , 𝑎

Ma,𝑛
𝑡−1), ∀𝑡, 𝑛, (5)

where 𝑎Ma,𝑛
𝑡 contains spatiotemporal information of a position

𝑔𝑛𝑡 ∈ G and deadline 𝑑𝑛𝑡 ∈ D. 𝑑𝑛𝑡 indicates the number of time

steps that 𝑎Ma,𝑛
𝑡 will last, during which the position will remain

the same. MaSC takes local observations 𝑜𝑛𝑡 and 𝑎Ma,𝑛
𝑡−1 as inputs,

combined with historical informationℎ𝑛𝑡−1 provided by GRU cell [6]

to produce an abstract representation. The latter, as a common head,

is then mapped to make macro strategies 𝑎Ma,𝑛
𝑡 by MLP layers𝑀 .

The MaSC can be formally expressed as:

ℎ𝑛𝑡 = GRU(ℎ𝑛𝑡−1, 𝑀 (𝑜𝑛𝑡 , 𝑎
Ma,𝑛
𝑡−1)), 𝑔𝑛𝑡 , 𝑑

𝑛
𝑡 = 𝑀 (ℎ𝑛𝑡) . (6)

Then macro strategy 𝑎Ma,𝑛
𝑡 is integrated into the input of MiPC,

which decides primitive action 𝑎Mi,𝑛
𝑡 for each agent to interact with

the environment, as:

𝑎Mi,𝑛
𝑡 = MiPC(𝑜𝑛𝑡 , 𝑑

𝑛
𝑡 , 𝑔

𝑛
𝑡 , 𝑎

Mi,𝑛
𝑡−1), ∀𝑡, 𝑛, (7)

where MiPC uses the same structure as in [34]. Next, following [37],

we define the joint value function, based on the individual value

functions of each agent at the macro strategic level as:

argmax𝒂Ma
𝑡

𝑄Ma (𝝉𝑡 , 𝒂
Ma
𝑡 ;𝚯)

=

������
argmax

𝑎Ma,1
𝑡

𝑄1
(
𝜏1𝑡 , 𝑎

Ma,1
𝑡 ;Θ1

)
...

argmax
𝑎Ma,𝑁
𝑡

𝑄𝑁
(
𝜏𝑁𝑡 , 𝑎Ma,𝑁

𝑡 ;Θ𝑁
)
�����	
,

(8)

where Θ is the parameters of MaSC. Similarly, the micro policy

level task factorization is given by:

argmax𝒂Mi
𝑡

𝑄Mi (𝝉𝑡 ,𝒈𝑡 , 𝒅𝑡 , 𝒂
Mi
𝑡 ;𝜽)

=

�������
argmax

𝑎Mi,1
𝑡

𝑄1
(
𝜏1𝑡 , 𝑔

1
𝑡 , 𝑑

1
𝑡 , 𝑎

Mi,1
𝑡 ;𝜃 1𝑡

)
...

argmax
𝑎Mi,𝑁
𝑡

𝑄𝑁
(
𝜏𝑁𝑡 , 𝑔𝑁𝑡 , 𝑑𝑁

𝑡 , 𝑎Mi,𝑁
𝑡 ;𝜃𝑁𝑡

)
������	
,

(9)

3241

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Hancheng Zhang, Guozheng Li, Chi Harold Liu, Guoren Wang, & Jian Tang

MaSC

Mixing NetworkMixing Network

MLP

GRU

MLP

TD Loss Heat Map Loss TD Loss

+

MaSC

+

MLP

GRU

MLP MLP

MiPCMiPC

Cross entropy

Positional Heat Map)

dist)

Figure 2: Overall structure of HiMacMic. Bottom is the decision-making process when high-level macro strategy inputs into

low-level micro policy. Upper part shows the process of optimizing network parameters in CTDE by using twomixing networks,

with the presence of heat map based self imitating learning loss and the intrinsic reward.

where 𝜃 is the parameters of MiPC.

Finally, we optimize HiMacMic in CTDE mode by using two

mixing networks with the help of a novel heat map based self

imitating learning loss LM𝑎
hm

and an intrinsic reward 𝑟Mi
𝑡 , under the

guidance of themacro strategy. Details will be given in the following

sections. HiMacMic has the following advantage, that on the basis

of micro policy, it models the agent cooperation by time-varying

macro strategies, to aid spatial exploration and temporal decision-

making, which might be quite conducive to better understanding

and completing tasks in difficult or sparse reward scenarios.

4.1 Asynchronous Deadline-Driven Dynamic
Macro Strategy Generation

Existing works HiTS [15] and TempoRL [5] used temporal abstrac-

tion from a macro perspective to seek a higher-level strategy. In-

spired by these works, we propose an asynchronous deadline (Asy-

DDL) driven macro strategy generation process, where durations

of macro strategies are not predetermined based on human experi-

ences and will be dynamically changed.

For each agent, when the deadline𝑑𝑛𝑡 > 1, we keep its current po-

sition unchanged; otherwise we reselect a macro strategy according

to Eqn. (5), as shown in Eqn. (10):

𝑎Ma,𝑛
𝑡+1 =

{ (
𝑔𝑛𝑡 , 𝑑

𝑛
𝑡 − 1

)
, 𝑑𝑛𝑡 > 1(

𝑔𝑛𝑡+1, 𝑑
𝑛
𝑡+1

)
, 𝑑𝑛𝑡 = 0.

(10)

To optimize 𝑎Ma,𝑛
𝑡+1 , the reward between the beginning and ending

states of a macro strategy within 𝑑𝑛𝑡 time steps is calculated by:

𝑟Ma
𝑡 :𝑡+𝑑𝑛𝑡 −1

(
𝜏𝑡 :𝑡+𝑑𝑛𝑡 −1, 𝑎

Ma
𝑡 :𝑡+𝑑𝑛𝑡 −1

)
=
∑𝑑𝑛𝑡 −1

Δ𝑡=0
𝛾Δ𝑡𝑟env𝑡+Δ𝑡 , (11)

where 𝑟 env𝑡 is the extrinsic reward from environment. Agent updates

its own network parameters according to its own experiences and

cumulative rewards by Eqn. (11).

Different from previous studies that artificially defined a fixed

number of time steps to skip, the deadline of a macro strategy in

HiMacMic is changing dynamically. This not only ensures that the

macro strategy has a certain continuity targeting certain spatial

position when 𝑑𝑛𝑡 > 1, but also expresses the urgency (if 𝑑𝑛𝑡 is

relatively small) and degree of task completion (highly likely so

if 𝑑𝑛𝑡 is big so that the same macro strategy remain unchanged

for a long period). Finally, our method allows different deadline

durations of all agents to asynchronously guide the underlying

micro policies in a dynamic way.

4.2 Spatial Navigation by Positional Heat Map
and Intrinsic Reward

Inspired by recent work in cognitive neuroscience [29] that

mice build a spatial map through the neurons in the hippocam-

pal and entorhinal cortex, we propose a two-dimensional heat map

Φ
(
𝑥𝑛𝑡 , 𝑦

𝑛
𝑡

)
→ 𝑔𝑛𝑡 ∈ G to navigate an agent’s macro strategic move-

ment. The resolution is a hyperparameter that can be tuned. Specif-

ically, if the agents receive a successful signal at the end of an

episode (e.g., receiving battle winning signal in SMAC or maximum

reward in one time step in Overcooked and GRF), we calculate the

number of visits of all agents to a position 𝑔 and update the heat

map 𝐶𝑖 (𝑔) from episode 𝑖 to 𝑖 + 1 as:

𝐶𝑖+1 (𝑔) = 𝐶𝑖 (𝑔) +
∑

𝑛

∑
𝑡
𝐹 (Φ(𝑥𝑛𝑡 , 𝑦

𝑛
𝑡), 𝑔), ∀𝑔, 𝑖, (12)

where 𝐹 is a discriminant function that outputs 1 if and only if the

location of agent equal to the position updated in this round. In

this way, we obtain a statistical distribution 𝑝𝑖 related to successful

experiences:

𝑝𝑖 (𝑔) =
𝐶𝑖 (𝑔)∑𝐺−1

𝑔′=0 𝐶𝑖 (𝑔
′)
, (13)

where 𝐺 is the dimension of position space G. To obtain the self

imitation learning loss function based on the heat map, we calculate

the cross entropy distance between distribution 𝑝 and 𝑄 as:

LMa
hm

(Θ𝑛) = −

𝐺−1∑
𝑔=0

𝑝𝑖 (𝑔) log
exp(𝑄 (𝑔;Θ𝑛))∑𝐺−1

𝑔′=0 exp(𝑄 (𝑔
′
;Θ𝑛))

, (14)

3242

HiMacMic: Hierarchical Multi-Agent Deep Reinforcement Learning with Dynamic Asynchronous Macro Strategy KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

Algorithm 1 HiMacMic

Init: reset environment and initialize 𝜽 and 𝚯.
Output: MaSC and MiPC.

1: while episode 𝑖 = 1, 2, . . . do
2: for 𝑡 = 1, 2, . . . ,𝑇 do

3: for 𝑛 = 1, 2, . . . , 𝑁 do

4: Get observation 𝑜𝑛𝑡 from environment;

5: Use Eqn. (5) and (10) to acquire 𝑎Ma,𝑛
𝑡 ;

6: Use Eqn. (7) to acquire 𝑎Mi,𝑛
𝑡 ;

7: end for

8: Take joint primitive action 𝒂Mi
𝑡 and acquire reward 𝑟 env𝑡 , 𝑠𝑡 ;

9: end for

10: if update MiPC then

11: Sample (𝑠1:𝐵𝑡 , 𝒂Ma,1:𝐵
𝑡 , 𝒂Mi,1:𝐵

𝑡 , 𝑟 env,1:𝐵𝑡) batch data from

buffer and calculate 𝑟Mi
𝑡 by Eqn. (15);

12: Use Eqn.(16) to update MiPC;

13: end if

14: if update MaSC then

15: for 𝑛 = 1, 2, . . . , 𝑁 do

16: Sample (𝑠𝑡 , 𝑔
𝑛
𝑡 , 𝑑

𝑛
𝑡 , 𝑠

𝑛
𝑡+𝑑𝑛𝑡

, 𝑟 env
𝑡 :𝑡+𝑑𝑛𝑡

) from buffer ;

17: Calculate 𝑟Ma
𝑡 :𝑡+𝑑𝑛𝑡 −1

and LMa
TD

by Eqn. (11), (17);

18: Calculate heatmap loss LMa
hm

by Eqn. (14);

19: Update MaSC by Eqn. (18);

20: end for

21: end if

22: end while

where 𝑄 (𝑔;Θ𝑛) refers to the macro strategy value of agent 𝑛 at

time step 𝑡 under a particular position 𝑔. The proposed positional

heat map has the following advantages:

• It enhances the agent exploration of environment. In Eqn.

(13), when no successful experience is collected at the be-

ginning, positional heat map presents a spatially uniform

distribution, which is conducive to guide multiple agents

to explore task environment comprehensively, and avoid

possible local optima.

• It improves sampling efficiency. After successful experiences

are gained, certain positions on the heat map become focus-

ing areas as macro strategy, which guides agents to cooperate

to complete the task. This will in turn optimize the heat map

distributions again, and thus sampling efficiency is improved.

Finally, we use Manhattan distance dist(·) to measure the sum of

absolute difference between an agent’s mapped position by macro

strategy Φ(𝑥𝑛𝑡 , 𝑦
𝑛
𝑡) and its predicted position 𝑔𝑛𝑡 from past trajecto-

ries. Then, we assign an intrinsic reward 𝑟Mi
𝑡 from the micro policy

to guide the agent to reach the designated position quickly and

accurately as:

𝑟Mi
𝑡 =

1

𝑁

∑
𝑛

(√
𝑑𝑛𝑡

dist
(
𝑔𝑛𝑡 ,Φ(𝑥

𝑛
𝑡 , 𝑦

𝑛
𝑡)
) − 𝑐

)
, (15)

where 𝑐 is a constant penalty.

4.3 Training Process and Complexity Analysis

As shown in Algorithm 1, in each training episode, we first use a

macro strategy and micro policy controller to acquire action for

each agent (Line 3-7). Next, we use joint primitive action to interact

with the environment (Line 8). When an episode is finished, we

save useful data (i.e., observation, location of agents, state, reward,

game status info from environment and the output of MaSC and

MiPC) into a replay buffer (Line 2-9) and reset environment. When

updating MiPC, we calculate the intrinsic reward 𝑟Mi
𝑡 (Line 11) and

use batch training to update all agents’ MiPC parameter through

loss function together:

LMi
TD (𝜽) =

∑
𝑏

⎡⎢⎢⎢⎢⎣𝛾 max
𝒂Mi,𝑏
𝑡+1

𝑄 Mi
(
𝑠𝑏𝑡+1, 𝒂

Ma,𝑏
𝑡+1 , 𝒂Mi,𝑏

𝑡+1 ;𝜽 −
)

−𝑄M𝑖
(
𝑠𝑏𝑡 , 𝒂

Ma,𝑏
𝑡 , 𝒂Mi,𝑏

𝑡 ;𝜽
)
+ 𝑟 env,𝑏𝑡 + 𝛽𝑟Mi,𝑏

𝑡

]2
,

(16)

where 𝛽 is the hyperparameter to weight intrinsic reward in micro

policy loss function (Line 12).When updatingMaSC, we re-organize

the macro state sequence between the beginning and ending states

of a macro strategywithin𝑑𝑛𝑡 time steps for each agent and calculate

TD loss by:

LMa
TD

(
Θ𝑛) = [

𝑟Ma,𝑛
𝑡 −𝑄Ma

(
𝑠𝑡 , 𝑎

Ma,𝑛
𝑡 ;Θ𝑛

)
+𝛾 max

𝑎Ma,𝑛
𝑡+𝑑𝑛𝑡

𝑄Ma
(
𝑠𝑡+𝑑𝑛𝑡 , 𝑎

Ma,𝑛
𝑡+𝑑𝑛𝑡

;Θ−,𝑛
)]2

,
(17)

where 𝑟Ma,𝑛
𝑡 is multi-step return in Eqn. (11) (Line 16-18). Finally,

we use loss (18) to update MaSC (Line 19):

LMa (Θ𝑛) = LMa
TD (Θ

𝑛) + 𝜆LMa
hm (Θ𝑛), (18)

where 𝜆 is hyperparameter to weight macro loss function.

Correspondingly, the network inference complexity of HiMacMic

during training can be expressed as 𝑂
(
𝜒 ·𝐷GRU ·

∑
𝜔 𝐷 in

𝜔𝐷out
𝜔

Λ

)
, where

𝜒,Λ denote the time of environment interaction and parallel run-

ners, respectively, 𝐷 in, 𝐷out are the dimensions of input vector and

output vector of the 𝜔-th FC layers, respectively, and 𝐷GRU is the

dimension of GRU-cell in controllers [6].

5 EXPERIMENTAL RESULTS

5.1 Setup

We select four games for performance benchmarking where nine

scenarios are chosen to represent either known difficult or sparse

reward cases.

• Overcooked [44]: Two chefs (agents) collaborate to accom-

plish cooking tasks in a gridded kitchen. The task involves

subtasks like vegetable selection, cutting, plating, and de-

livery. Successfully completing the overall task yields an

environmental reward of 200, while completing each sub-

task earns a reward of 10. However, delivering the wrong

dish incurs a penalty of -5, and a time step penalty of -0.1 is

applied. The final score is used for evaluation purposes.

• GRF [20]: Agents cooperate to score goals. When a goal is

scored or the maximum step limit is reached, the environ-

ment ends and resets. A reward of 100 is assigned for scoring

a goal. We consider two sparse reward scenarios: "keeper"

3243

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Hancheng Zhang, Guozheng Li, Chi Harold Liu, Guoren Wang, & Jian Tang

Table 1: Impact of loss coefficients 𝜆, 𝛽.

Overcooked GRF SMAC SMAC-v2

𝜆
𝛽

𝜆
𝛽

𝜆
𝛽

𝜆
𝛽

0.01 0.03 0.05 0.1 0.2 0.01 0.05 0.1 0.2 0.3 0.001 0.005 0.01 0.015 0.03 0.01 0.015 0.02 0.025 0.03
0.01 118.1 118.2 69.47 97.47 83.65 0.01 0.434 0.451 0.454 0.479 0.473 0.01 0.756 0.781 0.839 0.734 0.619 0.1 0.676 0.711 0.685 0.614 0.625
0.03 151.2 210.6 191.3 72.67 37.60 0.1 0.341 0.481 0.606 0.588 0.580 0.05 0.813 0.887 0.903 0.788 0.694 0.15 0.631 0.702 0.723 0.715 0.716
0.05 195.8 234.6 201.5 90.41 87.05 0.3 0.645 0.722 0.832 0.785 0.605 0.1 0.845 0.907 0.935 0.861 0.745 0.2 0.682 0.701 0.776 0.712 0.634
0.1 162.7 174.4 186.6 153.5 113.7 0.5 0.705 0.738 0.741 0.783 0.618 0.2 0.726 0.880 0.883 0.847 0.752 0.25 0.681 0.704 0.753 0.721 0.699
0.2 102.6 103.8 87.20 89.31 53.20 0.8 0.402 0.311 0.336 0.276 0.165 0.5 0.707 0.726 0.735 0.781 0.613 0.3 0.608 0.641 0.635 0.635 0.612

Table 2: Impact of heatmap resolution and macro strategy deadline.

GRF SMAC SMAC-v2

resolution
deadline

resolution
deadline

resolution
deadline

2 3 4 5 6 2 3 4 5 6 3 4 5 6 7
9 0.646 0.608 0.676 0.597 0.471 25 0.864 0.906 0.863 0.826 0.878 36 0.671 0.689 0.646 0.627 0.631
16 0.627 0.731 0.801 0.725 0.583 36 0.881 0.901 0.894 0.898 0.839 49 0.698 0.710 0.695 0.663 0.652
25 0.734 0.715 0.832 0.798 0.617 49 0.876 0.897 0.935 0.911 0.874 64 0.714 0.751 0.776 0.705 0.678
36 0.654 0.645 0.735 0.704 0.649 64 0.847 0.866 0.915 0.904 0.881 81 0.674 0.678 0.715 0.697 0.654
49 0.613 0.684 0.603 0.699 0.592 81 0.850 0.843 0.861 0.839 0.817 100 0.688 0.691 0.712 0.681 0.623

involves a confrontation between a few agents in front of

the goal, and "hard" represents a more challenging task. The

evaluation metric used is the winning rate over 100 rounds.

• SMAC [36]: We choose three cases 6h_vs_8z, 2c_vs_64zg

and MMM2 as well-known super hard scenarios [36] that

need sufficient exploration and cooperation, where existing

method can not solve task well. Battle winning rate over 100

rounds is used for evaluation.

• SMAC-v2 [9]: Known as much more challenging than SMAC,

agents on both sides have two types of random initial po-

sitions: opposite and surrounded. It adds a type of random

units. Taking Zerg as an example, there are 45%, 45% and

10% probabilities to initially generate Zergling, Hydralisk

and Baneing, respectively. In the experiment, we selected

the maps of Zerg, Protoss and Terran to test. Battle winning

rate over 100 rounds is used for evaluation.

In all the experiments, we use Pytorch 1.13.0 to implement Hi-

MacMic, and all the codes are run on a Ubuntu 18.04.4 LTS server

with 8 GeForce RTX 3090 graphic cards. By default, we take eight

million time steps to train all algorithms. If the scene is difficult

and cannot completely converge, we will extend the training time

steps to 15 million.

5.2 Hyperparameter Tuning

5.2.1 Impact of macro strategy/micro policy loss function coefficients

𝜆, 𝛽 : Wefirst show the impact of hyperparameters in the reward and

loss function calculation related to training macro strategy/micro

policy. We set constant penalty 𝑐 = 0.2, while other parameters

follow [33, 34]. In GRF, SMAC and SMAC-v2 environment, we

take the average result of all selected scenarios. From Table 1, we

observe that appropriate selection of 𝜆, 𝛽 achieves peak winning

rate. This is because the additional guidance from macro strategy

and intrinsic reward is insufficient when 𝜆, 𝛽 is small. On the other

hand, large coefficients may bring too much influence on agents to

cause training instability, which may result in poor performance.

5.2.2 Impact of Heat map resolution and macro strategy deadline:

Next, we show the impact of heatmap resolution andmacro strategy

deadline, which is related to how to analyze and use environment

information in both temporal and spatial dimensions. Since Over-

cooked is a grid game which cannot tune the heat map resolution,

we keep it as 25, while changing the resolution in GRF, SMAC and

SMAC-v2. We take the average result of all selected scenarios. From

Table 2, we observe that resolution in 5 × 5 = 25, 7 × 7 = 49 and

8 × 8 = 64 with 4, 4, 5 maximum macro strategy deadline yields

the best winning rate. This is because the extracted spatiotemporal

information of macro strategy is insufficient when heat map res-

olution and maximum macro strategy deadline are small, and too

much fine-grained representation of the state and too long time

span may bring information redundancy, resulted in poor overall

performance.

5.3 Ablation Study

We conduct ablation experiments, by removing key modules pro-

posed in this paper:

• HiMacMic with synchronous deadline (SynDDL): Different

fromHiMacMic using AsynDDL, we update the macro strate-

gies of all agents synchronously.

• HiMacMic with simple heatmap (w. s-hm): Instead of opti-

mizing macro strategy by the hindsight heatmap according

to the success signal from environment, we remove discrimi-

nant func 𝐹 in Eqn. (12) and sample trajectories of all agents

uniformly to build a simple heatmap.

• HiMacMic w/o hm: We set 𝜆 = 0 in Eqn. (18), to reflect

removing self imitating learning loss function based on heat

map.

• HiMacMic w/o 𝑟Mi
𝑡 : We only use heat map loss without in-

trinsic reward by setting 𝛽 = 0 in Eqn. (16).

From Table 3, we see that HiMacMic with SynDDL obtains lower

result, which confirms that synchronous macro strategy is not suit-

able for all agents. On the contrary, our approach with AsyDDL

allows agents to flexibly adjust their macro strategies based on

their own observations to achieve better cooperation. When re-

moving self imitating learning loss function based heat map and

intrinsic reward, or using simple heatmap without hindsight, the

performance drops more than 5%, which confirms their benefits

of bringing spatiotemporal information to update macro strategy

3244

HiMacMic: Hierarchical Multi-Agent Deep Reinforcement Learning with Dynamic Asynchronous Macro Strategy KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

Table 3: Ablation Study.

HiMacMic w. SynDDL w. s-hm w/o hm w/o 𝑟Mi
𝑡

Overcooked 234.6 218.7 219.8 213.5 198.4

GRF: keeper 0.869 0.793 0.702 0.670 0.634

GRF: hard 0.798 0.691 0.477 0.504 0.389

SMAC: 6h_vs_8z 0.851 0.754 0.719 0.679 0.683

SMAC: 2c_vs_64zg 0.969 0.891 0.857 0.861 0.886

SMAC: MMM2 0.985 0.947 0.925 0.901 0.897

SMAC-v2: zerg_5_vs_5 0.793 0.734 0.731 0.702 0.695

SMAC-v2: protoss_5_vs_5 0.763 0.691 0.706 0.688 0.679

SMAC-v2: terran_5_vs_5 0.771 0.722 0.721 0.704 0.718

agent 1

agent 2

(a) Heat map

agent 1

agent 2

(b) Agent movement (c) Asynchronous deadline

Figure 3: Visualization of Overcooked with HiMacMic.

dynamically and using it to guide micro policy. When removing

all above modules, the rest becomes vanilla QMIX and results are

given in Section 5.5.

5.4 Macro Strategy Visualizations by HiMacMic

We show the macro strategy in four game scenarios. The heatmap

shows the spatial distribution of macro strategy position of agents

selected in the test phase. The darker the color, the higher the

number of choices.

Overcooked: As shown in Figure 3, agent 1 takes a tomato

then brings it to the knife for cutting, thus selecting the purple

box position as macro strategy. Meanwhile, agent 2 finishes cutting

vegetables and then takes the macro strategy advice to load it on

a plate. Figure 3(c) further shows the time-varying deadlines of

two agents, which reflects when/where to move from the vegetable

cutting area to the dish loading area, or from the vegetable picking

area to the cutting area, where the macro strategy may last for some

time before changing. Furthermore, we see that two agents’ macro

strategy deadlines may not always coincide, since their tasks are

not synchronized as well as their macro strategies.

GRF-keeper: As shown in Figure 4(a), when the heat map res-

olution is too low, agent 1 and 3 prefer to stay, letting agent 2 to

dribble into the penalty area alone. As another extremity, when the

heat map resolution is too high, the macro strategies of all agents

all point to a small scoring area right in front of the keeper (see

Figure 4(b)), so that the only defender can better position himself

to stop ball from the final shot. Figure 4(c) shows the optimal heat

map resolution 25, where we can clearly see a strategy is generated,

that agent 2 moves in front of the penalty area and completes a pass

(by selecting the orange box as macro strategy); then agent 1 first

moves to the right side to attract the opponent in flank, and passes

the ball to the goal and outflank to the keeper (by selecting the

green box as macro strategy); finally, agent 3 moves to the goal di-

rectly and complete an easy shot (by selecting the red box as macro

strategy). This is further confirmed by reading their time-varying

(a) Heat map resolution = 9 (b) Heat map resolution = 49

(c) Heat map resolution = 25 (optimal)

(d) Asynchronous deadline of 3 agents.

Figure 4: Visualization of GRF: keeper with HiMacMic.

(a) Heat map resolution = 16 (b) Heat map resolution = 81

(c) Heat map resolution = 49 (optimal)

(d) Asynchronous deadline of 6 agents.

Figure 5: Visualization of SMAC: 6h_vs_8z with HiMacMic.

deadlines in Figure 4(c). Agent 2 hosts an increasing deadline du-

ration (referring to ball carrying and passing) at the beginning,

and then keeps moving in the front of restricted area (i.e., 𝑑𝑛𝑡 =1).
Similar phenomenon is observed for agent 1 and 3, which show the

frequent macro strategy update.

SMAC-6h_vs_8z: As shown in Figure 5(a) and (b), due to inap-

propriate heat map resolution, agents are too dispersed or clustered,

which is difficult to concentrate fire or easily being surrounded.

Figure 5(c) shows the optimal resolution 49 where agents form a tri-

angular formation (blue box as macro strategy). Figure 5(d) further

shows the time-varying deadlines of six agents at the beginning

of 45 time steps, which reflects when/where to move in order to

better attack the enemy.

SMAC-v2-zerg_5_vs_5: As shown in Figure 6(a), due to inap-

propriate heat map resolution, agents are too dispersed where they

3245

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Hancheng Zhang, Guozheng Li, Chi Harold Liu, Guoren Wang, & Jian Tang

(a) Heat map resolution = 36

(b) Heat map resolution = 100

(c) Heat map resolution = 64 (optimal)

(d) Asynchronous deadline of 5 agents.

Figure 6: Visualization of SMAC-v2: zerg_5_vs_5 with HiMacMic.

fight individually. Agent 1 and 2 fight at the top of the map, while

agent 3 moves down to battle with agent 4 and 5. However, a good

strategy should build a more powerful group rather than form-

ing multiple battle zones. On the contrary, when the resolution is

too high, agents are inclined to form a group right after the game

start so that they are surrounded or annihilated by the enemy (e.g.,

agents 2, 3 and 4 gather in the middle thus quite vulnerable to range

damage caused by enemy Baneling units through self-explosion;

see Figure 6(b)). Figure 6(c) shows the optimal resolution we found

where the agent 1 and 2 move down quickly and gather with others

in the middle, to form a local advantage before the enemy’s upper

right unit arrives. Meanwhile, agents fight against the enemy in

the battle zone at the bottom left of the map, but not too close as

in Figure 6(b). Instead, they keep relatively scattered in the small

battle zone and retain the possibility of attracting the enemy by

moving towards the border of the map. Figure 6(d) further shows

the time-varying deadlines of five agents at the beginning of 35

time steps, which confirms when/where to move in order to better

attack the enemy.

5.5 Comparing with 10 Baselines

We compare HiMacMic with 10 state-of-the-art solutions:

• MADRL for only micro policy, including value-based method

VDN [38], QMIX [34], QTRAN [37], OW-QMIX [33], CW-

QMIX [33] and QPLEX [43], as well as policy-based method

MAPPO [50] and FACMAC [30].

Table 4: Computational complexity of all methods.

Method Time Cost (ms) Graphic Card Mem. Usage (GB)

HiMacMic 1.328 1.981

VDN [38] 1.176 1.383

QMIX [34] 1.267 1.503

QTRAN [37] 1.437 2.679

OW-QMIX [33] 1.389 2.541

CW-QMIX [33] 1.405 2.673

QPLEX [43] 1.512 1.897

MAPPO [50] 1.226 1.259

FACMAC [30] 1.364 1.321

RODE [45] 1.306 1.921

MASER [17] 1.337 1.329

• MADRL for micro policy with hierarchical control, including

RODE [45], and MASER [17].

Figure 7 shows the training curves with 8/15 million time steps.

We see that HiMacMic converges much faster and gets higher fi-

nal results. Especially in the most difficult SMAC scenario (see

Figure 7 (d)) and SMAC-v2 scenario (see Figure 7 (g)), HiMacMic

improves the best performance by around 10%. In GRF scenarios

(see Figure 7(b) and (c)), achieves a lot better performance compared

with QPLEX. This result reflects the benefits of bringingmacro strat-

egy and micro policy together in a hierarchical MADRL framework.

Also, by introducing heat map based self imitation learning, the

macro strategy updates rapidly and efficiently, to allow agents to

fully explore environment with better group cooperations.

HiMacMic also shows a good degree of algorithm stability and

adaptability to different environments of the same game. RODE

pre-trained different roles to make hierarchical decisions at the

beginning and did not change them afterwards, thus performing

bad in GRF and SMAC-v2 (see Figure 7(b-c) and Figure 7(g-i)).

MASER generated subgoals only from replay buffer, which are

insufficient spatiotemporally, thus showing weak performance in

Overcookded (see Figure 7(a)) and GRF: hard (see Figure 7(c)) and

fail to solve SMAC: 6h_vs_8z (see Figure 7(d)) and 2c_vs_64zg (see

Figure 7(e)). This confirms the benefits brought by HiMacMic to

make macro strategic decisions dynamically and asynchronously,

as well as environment exploration by intrinsic reward.

Figure 7(j)-(l) show the training curves with 15 million time

steps in the most challenging SMAC-v2 environment with conical

field of view. As said earlier in SMAC-v2, there are three major

changes: using random start positions, restricting the agent field

of view and shooting range to a cone (where the agent can no

longer have a circular view, but needs to select the direction of

observation through 12 actions and obtain local observation). It

can be seen that our method outperforms all baselines by more

than 3%. This confirms the benefits brought by HiMacMic to make

macro strategic decisions dynamically and asynchronously, as well

as environment exploration by intrinsic reward.

Finally, computational complexity (both time cost and graphic

cardmemory usage) is given in Table 4.We observe that the running

time to produce actions in a time step by HiMacMic is similar to that

of other baselines, and within the same order of magnitude. The

graphic card memory usage of HiMacMic is only slightly higher

than others but lower than QTRAN and Weighted QMIX, given the

benefits it brings.

3246

HiMacMic: Hierarchical Multi-Agent Deep Reinforcement Learning with Dynamic Asynchronous Macro Strategy KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

(a) Overcooked (b) GRF: keeper (c) GRF: hard (d) SMAC: 6h_vs_8z

(e) SMAC: 2c_vs_64zg (f) SMAC: MMM2 (g) SMAC-v2: zerg_5_vs_5 (h) SMAC-v2: protoss_5_vs_5

(i) SMAC-v2: terran_5_vs_5 (j) SMAC-v2_conic_fov:
zerg_5_vs_5

(k) SMAC-v2_conic_fov:
protoss_5_vs_5

(l) SMAC-v2_conic_fov:
terran_5_vs_5

Figure 7: Experiment results on Overcooked, GRF, SMAC and SMAC-v2.

Table 5: Large-scale and practical experimental results.

Method Vehicle Dispatch (reward) SMAC-v2: zerg_20_vs_20

HiMacMic 109.17 0.6931

VDN [38] 10.54 0.3565

QMIX [34] 101.35 0.6091

QTRAN [37] -26.13 0.2627

OW-QMIX [33] 102.64 0.5143

CW-QMIX [33] 97.09 0.5625

QPLEX [43] -14.92 0.3242

MAPPO [50] 103.57 0.5018

FACMAC [30] -20.14 0.4921

RODE [45] -29.71 0.1803

MASER [17] 14.19 0.6127

5.6 Large-scale and Practical Experiments

We designed a vehicle dispatching simulator based on real-world

ride-hailing datasets [1]. Similar to [40], we rasterized the latitude

and longitude range covered the data into a 10*10 square grid.

Then, we obtained an initial distribution of order distribution and

available taxis based on the average value of the selected data in

a time period between 18:00 and 19:00. Based on the initial order

distribution and taxi distribution, we initialized 120 orders and

110 taxis in the environment in proportion, where each taxi is an

independent agent unit. Our objective is to minimize passenger

waiting time. When a passenger and a vehicle occupy the same grid,

we consider them to be matched, and the agent completes the task.

The episode ends when all agents have completed their matches.

Agents have six action options: move (up, down, left, right), stay,

and finish. An agent’s observation is a local view that includes

the number of cars and orders in nearby cells. Each time step, an

agent receives a step penalty of -0.01 multiplied by the remaining

passenger count n. When an agent successfully completes a subtask

(picks up a passenger), it receives a subtask finished reward of 0.2.

When all agents complete the matching process, they receive an

all finish reward of 100. The multi-agent system shares a global

reward, and there is no separate reward function designed for each

agent in the environment. The results demonstrate that HiMacMic

achieves higher reward values, effectively minimizing the overall

waiting time for passengers.

When increasing number of agents in the SMAC-v2-zerg envi-

ronment, with a 20vs20 matchup, from Table 5, we see that even

though the scenario became more complex, HiMacMic still main-

tained its advantage.

6 CONCLUSION

In this paper, we propose HiMacMic, a hierarchical MADRL frame-

work with both macro strategy and micro policy. Temporally, Hi-

MacMic introduced an asynchronous deadline driven dynamic

decision-making process to update macro strategies of all agents

flexibly, and spatially, time-varying macro strategies are improved

by the positional heat map. Then, low-level micro policies are gener-

ated using an intrinsic reward to better complete tasks as a cooper-

ation. Extensive results on Overcooked, GRF, SMAC and SMAC-v2

games show the effectiveness and adaptability of HiMacMic when

compared with 10 baselines. We also find the best hyperparameters,

and visualize the agent trajectories to better understand the macro

strategy and micro policy generated by HiMacMic.

ACKNOWLEDGMENTS

This work has been supported by National Natural Science Foun-

dation of China (No. U21A20519 and 61772072). Corresponding

author: Guozheng Li.

3247

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Hancheng Zhang, Guozheng Li, Chi Harold Liu, Guoren Wang, & Jian Tang

REFERENCES
[1] 2015. ECML/PKDD 15: Taxi Trajectory. https://www.kaggle.com/competitions/

pkdd-15-predict-taxi-service-trajectory-i/data. Accessed on 6 April 2023.
[2] Sanjeevan Ahilan and Peter Dayan. 2019. Feudal Multi-Agent Hierarchies for

Cooperative Reinforcement Learning. CoRR abs/1901.08492 (2019).
[3] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,

Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech
Zaremba. 2017. Hindsight Experience Replay. In NeurIPS’17, Vol. 30. 5048–5058.

[4] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch.
2018. Emergent Complexity via Multi-Agent Competition. In ICLR’18.

[5] André Biedenkapp, Raghu Rajan, Frank Hutter, and Marius Lindauer. 2021. Tem-
poRL: Learning When to Act. In ICML’21, Vol. 139. 914–924.

[6] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical Evaluation of Gated Recurrent Neural Networks on SequenceModeling.
In NIPS’14 Deep Learning and Representation Learning Workshop.

[7] Cédric Colas, Pierre-Yves Oudeyer, Olivier Sigaud, Pierre Fournier, and Mohamed
Chetouani. 2019. CURIOUS: Intrinsically Motivated Modular Multi-Goal Rein-
forcement Learning. In ICML’19, Vol. 97. 1331–1340.

[8] Peter Dayan and Geoffrey E. Hinton. 1992. Feudal Reinforcement Learning. In
NIPS’92, Vol. 5. 271–278.

[9] Benjamin Ellis, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob N. Foerster, and Shimon Whiteson. 2022. SMACv2: An Improved Bench-
mark for Cooperative Multi-Agent Reinforcement Learning. CoRR abs/2212.07489
(2022).

[10] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. 2019.
Diversity is All You Need: Learning Skills without a Reward Function. In ICLR’19.

[11] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. 2018. Automatic
Goal Generation for Reinforcement Learning Agents. In ICML’18, Vol. 80. 1514–
1523.

[12] Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli,
and Shimon Whiteson. 2018. Counterfactual Multi-Agent Policy Gradients. In
AAAI’18. 2974–2982.

[13] Yiming Gao, Bei Shi, Xueying Du, Liang Wang, Guangwei Chen, Zhenjie Lian,
Fuhao Qiu, GUOAN HAN, Weixuan Wang, Deheng Ye, Qiang Fu, Wei Yang, and
Lanxiao Huang. 2021. Learning Diverse Policies in MOBA Games via Macro-
Goals. In NeurIPS’21, Vol. 34. 16171–16182.

[14] Sven Gronauer and Klaus Diepold. 2022. Multi-agent deep reinforcement learning:
a survey. Artif. Intell. Rev. 55, 2 (2022), 895–943.

[15] Nico Gürtler, Dieter Büchler, and Georg Martius. 2021. Hierarchical Reinforce-
ment Learning with Timed Subgoals. In NeurIPS’21, Vol. 34. 21732–21743.

[16] Xiaotian Hao, Weixun Wang, Hangyu Mao, Yaodong Yang, Dong Li, Yan Zheng,
Zhen Wang, and Jianye Hao. 2022. API: Boosting Multi-Agent Reinforcement
Learning via Agent-Permutation-Invariant Networks. CoRR abs/2203.05285
(2022).

[17] Jeewon Jeon, Woojun Kim, Whiyoung Jung, and Youngchul Sung. 2022. MASER:
Multi-Agent Reinforcement Learning with Subgoals Generated from Experience
Replay Buffer. In ICML’22, Vol. 162. 10041–10052.

[18] Landon Kraemer and Bikramjit Banerjee. 2016. Multi-agent reinforcement learn-
ing as a rehearsal for decentralized planning. Neurocomputing 190 (2016), 82–94.

[19] Tejas D. Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum.
2016. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstrac-
tion and Intrinsic Motivation. In NIPS’16. 3675–3683.

[20] Karol Kurach, Anton Raichuk, Piotr Stanczyk,Michal Zajac, Olivier Bachem, Lasse
Espeholt, Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet,
and Sylvain Gelly. 2020. Google Research Football: A Novel Reinforcement
Learning Environment. In AAAI’20. 4501–4510.

[21] Jiahui Li, Kun Kuang, BaoxiangWang, Furui Liu, Long Chen, FeiWu, and Jun Xiao.
2021. Shapley Counterfactual Credits for Multi-Agent Reinforcement Learning.
In KDD’21. 934–942.

[22] Chi Harold Liu, Zheyu Chen, Jian Tang, Jie Xu, and Chengzhe Piao. 2018. Energy-
Efficient UAV Control for Effective and Fair Communication Coverage: A Deep
Reinforcement Learning Approach. IEEE J. Sel. Areas Commun. 36, 9 (2018),
2059–2070.

[23] Chi Harold Liu, Xiaoxin Ma, Xudong Gao, and Jian Tang. 2020. Distributed
Energy-Efficient Multi-UAVNavigation for Long-Term Communication Coverage
by Deep Reinforcement Learning. IEEE Trans. Mob. Comput. 19, 6 (2020), 1274–
1285.

[24] Ryan Lowe, YiWu, Aviv Tamar, Jean Harb, Pieter Abbeel, and IgorMordatch. 2017.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In
NeurIPS’17, Vol. 30. 6379–6390.

[25] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor
Mordatch. 2017. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive
Environments. In NeurIPS’17, Vol. 30. 6379–6390.

[26] Shuang Luo, Yinchuan Li, Jiahui Li, Kun Kuang, Furui Liu, Yunfeng Shao, and
Chao Wu. 2022. S2RL: Do We Really Need to Perceive All States in Deep Multi-
Agent Reinforcement Learning?. In KDD’22. 1183–1191.

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nat. 518, 7540 (2015),
529–533.

[28] Frans A. Oliehoek and Christopher Amato. 2016. A Concise Introduction to
Decentralized POMDPs. Springer.

[29] Seongmin A Park, Douglas S Miller, and Erie D Boorman. 2021. Inferences on a
multidimensional social hierarchy use a grid-like code. Nature neuroscience 24, 9
(2021), 1292–1301.

[30] Bei Peng, Tabish Rashid, Christian Schröder de Witt, Pierre-Alexandre Kamienny,
Philip H. S. Torr, Wendelin Boehmer, and Shimon Whiteson. 2021. FACMAC:
Factored Multi-Agent Centralised Policy Gradients. In NeurIPS’21, Vol. 34. 12208–
12221.

[31] Xinghua Qu, Yew Soon Ong, Abhishek Gupta, Pengfei Wei, Zhu Sun, and Zejun
Ma. 2022. Importance Prioritized Policy Distillation. In KDD’22. 1420–1429.

[32] Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. 2018. Modeling
Others using Oneself in Multi-Agent Reinforcement Learning. In ICML’18, Vol. 80.
4254–4263.

[33] Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. 2020.
Weighted QMIX: Expanding Monotonic Value Function Factorisation for Deep
Multi-Agent Reinforcement Learning. In NeurIPS’20, Vol. 33. 10199–10210.

[34] Tabish Rashid, Mikayel Samvelyan, Christian Schröder deWitt, Gregory Farquhar,
Jakob N. Foerster, and ShimonWhiteson. 2018. QMIX: Monotonic Value Function
Factorisation for Deep Multi-Agent Reinforcement Learning. In ICML’18, Vol. 80.
4292–4301.

[35] Stuart Russell and Andrew Zimdars. 2003. Q-Decomposition for Reinforcement
Learning Agents. In ICML’03. 656–663.

[36] Mikayel Samvelyan, Tabish Rashid, Christian Schröder deWitt, Gregory Farquhar,
Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob N.
Foerster, and Shimon Whiteson. 2019. The StarCraft Multi-Agent Challenge. In
AAMAS’19. 2186–2188.

[37] Kyunghwan Son, Daewoo Kim,Wan Ju Kang, David Hostallero, and Yung Yi. 2019.
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent
Reinforcement Learning. In ICML’19, Vol. 97. 5887–5896.

[38] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Viní-
cius Flores Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z.
Leibo, Karl Tuyls, and Thore Graepel. 2018. Value-Decomposition Networks
For Cooperative Multi-Agent Learning Based On Team Reward. In AAMAS’18.
2085–2087.

[39] Richard S. Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and
Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning.
Artif. Intell. 112, 1-2 (1999), 181–211.

[40] Xiaocheng Tang, Fan Zhang, Zhiwei Qin, Yansheng Wang, Dingyuan Shi,
Bingchen Song, Yongxin Tong, Hongtu Zhu, and Jieping Ye. 2021. Value Function
is All You Need: A Unified Learning Framework for Ride Hailing Platforms. In
KDD ’21. 3605–3615. https://doi.org/10.1145/3447548.3467096

[41] Runzhe Wan, Xinyu Zhang, and Rui Song. 2021. Multi-Objective Model-Based
Reinforcement Learning for Infectious Disease Control. In KDD’21. 1634–1644.

[42] Hao Wang, Chi Harold Liu, Zipeng Dai, Jian Tang, and Guoren Wang. 2021.
Energy-Efficient 3D Vehicular Crowdsourcing for Disaster Response by Dis-
tributed Deep Reinforcement Learning. In KDD’21. 3679–3687.

[43] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. 2021.
QPLEX: Duplex Dueling Multi-Agent Q-Learning. In ICLR’21.

[44] Rose E. Wang, Sarah A. Wu, James A. Evans, Joshua B. Tenenbaum, David C.
Parkes, and Max Kleiman-Weiner. 2020. Too Many Cooks: Coordinating Multi-
agent Collaboration Through Inverse Planning. In AAMAS’20. 2032–2034.

[45] Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and
Chongjie Zhang. 2021. RODE: Learning Roles to Decompose Multi-Agent Tasks.
In ICLR’21.

[46] Yuchen Xiao, Weihao Tan, and Christopher Amato. 2022. Asynchronous Actor-
Critic for Multi-Agent Reinforcement Learning. In NeurIPS’22.

[47] Jiachen Yang, Igor Borovikov, and Hongyuan Zha. 2020. Hierarchical Cooperative
Multi-Agent Reinforcement Learning with Skill Discovery. In AAMAS’20. 1566–
1574.

[48] Jiachen Yang, Alireza Nakhaei, David Isele, Kikuo Fujimura, and Hongyuan
Zha. 2020. CM3: Cooperative Multi-goal Multi-stage Multi-agent Reinforcement
Learning. In ICLR’20.

[49] Rui Yang, Jie Wang, Zijie Geng, Mingxuan Ye, Shuiwang Ji, Bin Li, and Feng Wu.
2022. Learning Task-Relevant Representations for Generalization via Character-
istic Functions of Reward Sequence Distributions. In KDD’22. 2242–2252.

[50] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre M. Bayen, and Yi
Wu. 2021. The Surprising Effectiveness of MAPPO in Cooperative, Multi-Agent
Games. CoRR abs/2103.01955 (2021).

[51] Bo Zhang, Chi Harold Liu, Jian Tang, Zhiyuan Xu, Jian Ma, and Wendong Wang.
2018. Learning-Based Energy-Efficient Data Collection by Unmanned Vehicles
in Smart Cities. IEEE Trans. Ind. Informatics 14, 4 (2018), 1666–1676.

3248

