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Meta Auxiliary Learning for Top-K
Recommendation

Ximing Li, Chen Ma*, Guozheng Li, Peng Xu, Chi Harold Liu, Senior Member, IEEE, Ye Yuan,
and Guoren Wang

Abstract—Recommender systems are playing a significant role in modern society to alleviate the information/choice overload
problem, since Internet users may feel hard to identify the most favorite items or products from millions of candidates. Thanks to the
recent successes in computer vision, auxiliary learning has become a powerful means to improve the performance of a target (primary)
task. Even though helpful, the auxiliary learning scheme is still less explored in recommendation models. To integrate the auxiliary
learning scheme, we propose a novel meta auxiliary learning framework to facilitate the recommendation model training, i.e., user and
item latent representations. Specifically, we construct two self-supervised learning tasks, regarding both users and items, as auxiliary
tasks to enhance the representation effectiveness of users and items. Then the auxiliary and primary tasks are further modeled as a
meta learning paradigm to adaptively control the contribution of auxiliary tasks for improving the primary recommendation task. This is
achieved by an implicit gradient method guaranteeing less time complexity comparing with conventional meta learning methods. Via a
comparison using four real-world datasets with a number of state-of-the-art methods, we show that the proposed model outperforms
the best existing models on the Top-K recommendation by 3% to 23%.

Index Terms—Recommender Systems, Auxiliary Learning, Meta Learning, Implicit Gradient.

✦

1 INTRODUCTION

CURRENT Internet services have enabled the convenient
access of a vast number of online products and services,

providing benefits for the whole society. Even though help-
ful and beneficial, it also brings a heavy burden for users to
pick up the items that will appeal to them from a plethora
of candidates, which leads to the information/choice over-
load. To address the information/choice overload problem,
recommender systems come into being and serve a large
number of demands for uses in terms of identifying the most
relevant information and providing personalized services.
They not only help users easily discover products that are
likely to interest them, but also create opportunities for
product and service providers to better serve customers and
to increase revenue.

To learn a good recommendation model, the learning of
the interactions between users and items lies at the core,
such as the historical click and purchase records of users
in the real world. Except for only modeling the user-item
interaction, a number of studies have also incorporated the
useful information from other sources of users or items (see
Figure 1), for example, user connections [1], [2] and item
relations [3], [4], to improve the recommendation or benefit
the recommendation from other aspects like recommenda-
tion explainability. These studies provide guidance for how
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to make good use of the auxiliary information other than
only relying on the interaction data.

Recently, auxiliary (task) learning [5], [6] has become a
potent solution for boosting the generalization ability of a
pre-defined primary task in many applications like com-
puter vision [7] and graph representation learning [8]. The
sharing of features across tasks results in additional relevant
features being explored and leveraged, which otherwise
would not have been learned from training only on the
primary task. Auxiliary learning is much similar to multi-
task learning [9] with one major difference that auxiliary
tasks are only constructed to help improve the performance
of the primary task.

Although the auxiliary learning scheme has demon-
strated its capacity in many domains, two major challenges
still remain in the personalized recommendation. First, the
design of auxiliary tasks requires domain knowledge and
hand-crafted engineering, and not all auxiliary tasks can
provide the inductive bias to make the model further cap-
ture meaningful representations. Thus, how to design useful
auxiliary tasks with little extra effort that can benefit the pri-
mary recommendation task is non-trivial. Second, different
auxiliary tasks make distinct contributions to the primary
recommendation task. Simply setting a fixed contribution
degree as a hyper-parameter incurs the tedious hyper-
parameter search, specifically when the number of auxiliary
tasks is large. Furthermore, different training phases may
need different contribution magnitudes of each auxiliary
task. Therefore, how to adaptively balance the contribution
of different auxiliary tasks and make important ones con-
tribute more is challenging.

To tackle the aforementioned challenges, we propose
a novel recommendation paradigm, namely Meta Auxil-
iary Learning (MAL), to successfully integrate the auxiliary
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Fig. 1. The demonstration of the interactions between users and items,
and relations between users/items in recommender systems.

learning scheme into the Top-K recommendation. First, we
construct two auxiliary learning tasks for the explicit user-
user and item-item modeling, which are borrowed from
classic user-based and item-based collaborative filtering
methods [10]. Specifically, we resort to the self-supervised
learning methods, where we maximize the mutual infor-
mation between the user or item with its similar neighbors
to add extra inductive bias into the learned representations.
Second, we assign additional learnable importance factors to
auxiliary tasks to control their contributions to the primary
recommendation task during training. In particular, these
importance factors are automatically learned by the meta
learning framework as the outer variable, where we adopt
a one-step stochastic gradient descent trick to simplify the
learning process. Third, for reducing the time complexity
in importance factor updating, we adopt an implicit gradi-
ent method to explicitly construct the connection between
recommendation model parameters and these importance
factors, instead of using the second-order gradient updating
in meta learning. We extensively evaluate our model on
four real-world datasets, comparing it with many state-of-
the-art methods using a variety of performance validation
metrics. The experimental results not only demonstrate the
improvements of our model over other baselines but also
show the proposed meta auxiliary learning framework is
a general training scheme that can be plugged into other
recommendation models.

To summarize, the major contributions of the proposed
model MAL are:

• We propose an effective recommendation framework
that successfully integrates the auxiliary learning
scheme.

• To control the contribution of each auxiliary task, we
propose a meta learning framework to identify use-
ful auxiliary tasks and balance their importance when
training with the primary recommendation task.

• To reduce the complexity of computation, we employ
an implicit gradient method to update the importance
factors for auxiliary tasks, which avoids the high-other
derivative computation.

• Experiments on four real-world datasets show that
MAL significantly outperforms the state-of-the-art
methods for the Top-K recommendation task. The im-

plicit gradient method also demonstrates its time effi-
ciency theoretically and empirically.

2 RELATED WORK

In this section, we introduce the related work regarding Top-
K recommendation, auxiliary learning and meta learning.

2.1 Top-K Recommendation
Early recommendation studies largely focused on explicit
feedback [11], [12]. The recent research focus is shifting
towards implicit data [13]. Implicit data includes clicks, vis-
its, purchases, etc., while explicit feedback includes ratings.
Collaborative filtering (CF) with implicit feedback is usually
treated as a top-k item recommendation task, where the goal
is to recommend a list of items to users that users may be
interested in. It is more practical and challenging [14], and
accords more closely with the real-world recommendation
scenario. Early works mostly rely on matrix factorization
techniques [15], [16] to learn latent features of users and
items. Due to their ability to learn salient representations,
(deep) neural network-based methods have been exten-
sively researched. [17] proposed NeuMF, which is the con-
catenation of GMF layer and MLP layer, to extract user in-
terest from implicit data. Autoencoder-based methods have
also been proposed for top-k recommendation, such as [18]
construct new feedback data by noise processing to make
recommendation, [19] uses attention-based autoencoders
to distinguish the user preference, [20] introduced neural
gating mechanism for autoencoder-based recommender sys-
tems. In [21], [22], deep learning techniques are used to
boost the traditional matrix factorization and factorization
machine methods. Recently, graph neural networks [23]
also demonstrate the effectiveness in recommender systems.
Some methods use graph neural networks to model the
interactions between users and items, such as [24] construct
a light graph convolutional network which only includes
neighborhood aggregation, [25] proposed a dual-channel
hypergraph architecture to learn the embedding of users
and items respectively. There are also some methods model-
ing the additional knowledge to assist in recommendation,
such as [2] constructing user-user and item-item graphs to
integrate the proximal information.

2.2 Auxiliary Learning
Auxiliary learning is similar to multi-task learning in certain
aspects, but unlike multi-task learning, auxiliary learning
only focuses on the performance of the primary task. Re-
cently, auxiliary learning has been an effective solution to
improve the performance of a primary task in many fields.
For example, [26] apply auxiliary supervision by learning
intermediate low-level representations to benefit the recog-
nition of conversational speeches. [27] choose auxiliary tasks
to enhance the single scene depth estimation and semantic
segmentation. [28] propose a sentiment analysis model,
which is constructed by two auxiliary tasks to learn the
sentence embedding. By carefully designing the learning
tasks, auxiliary learning can also be used in a unsuper-
vised fashion without ground-truth labels. [5] improve the
agent learning in Atari games by predicting the immediate
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rewards from a short historical context, which are unsuper-
vised auxiliary tasks. [29] perform unsupervised monocular
depth estimation to predict the relative pose of multiple
cameras. [30] propose to use the cosine similarity as an
adaptive task weighting to determine which auxiliary task
is more useful. Also, auxiliary learning has achieved a huge
progress in the field of self-supervised learning. For exam-
ple, [31] build a self-supervised auxiliary reconstruction task
which shares a part of the network with the primary task,
using a joint training scheme to enhance the performance
of image deblurring. Recently, the auxiliary learning is also
incorporated in graph representation learning by selecting
meaningful meta-paths [8]. Several recent methods [32],
[33] also apply the meta-learning or bilevel optimization to
identify important auxiliary tasks. Auxiliary learning has
also been explored in the recommender systems recently.
[34] introduce a punitive auxiliary task to helps the model
promote samples with high Conversion Rate (CVR) but low
Click-Through Rate (CTR). [35] proposes to adjust the gradi-
ent of the auxiliary learning dynamically, and through this
method, models can avoid a serious optimization imbalance
problems.

2.3 Meta Learning

Meta learning, also known as learning to learn, is a kind of
approaches focusing on the learning process itself, and tries
to generalize the learning strategy on new tasks. In recent
years, meta learning has developed rapidly and has been
applied suitably in many fields. Early works explore the
use of meta learning to automatically update the rules of
neural networks [36]. Recent methods try to customize the
optimizers by meta learning, which are based on LSTMs [37]
or synthetic gradients [38]. There are also some models that
use meta learning to solve special data sampling problems,
such as [39] using meta learning to construct a weight func-
tion for sample-reweighting. Meta learning has also been
studied for finding optimal hyper-parameters [40] and a
good initialisation for few-shot learning [41]. [42] investigate
few-shot learning via an external memory module. [43]
realise the few-shot learning in the instance space via a
differentiable nearest-neighbour approach. Recently, graph
neural networks also introduce meta learning to perform
specific tasks. For example, [44] structures the pre-training
step to simulate the fine-tuning process on downstream
tasks, so as to directly optimize the pre-trained model’s
quick adaptability to downstream tasks.

Different from the above three categories of methods,
we distinguish our model by the first to integrate the
auxiliary learning scheme in the recommendation model.
Furthermore, two self-supervised learning tasks are care-
fully designed as the auxiliary task to enhance the primary
recommendation task. To control the contribution of the
auxiliary task, we propose a fine-grained weighting scheme
optimized by a meta-learning framework using the implicit
gradient method.

3 PROBLEM FORMULATION

For the recommendation model proposed in this paper, the
input data is the implicit feedback between users and items,

such as clicks, purchases, or visits. For each user u, the
items that this user has accessed are denoted by an item
set Du =

{
I1, ..., Ij , ..., I|Du|

}
, where Ij is an item index in

the dataset. Top-K recommendation aims to provide each
user with a set of K most relevant items from whole items
in the dataset, which can be formulated as: for each user i,
given the training set Su and a non-empty test set Tu (satisfy
Su ∪ Tu = Du and Su ∩ Tu = ∅), the recommender system
should return an ordered set of items Xu such that |Xu| ≤ K
and Su ∩ Xu = ∅. Then the recommendation quality is
measured by Recall@K and NDCG@K via comparing the
items in Tu with which in Xu. A summary of notations is
shown in Table 1.

TABLE 1
A summary of notations.

u, i user u, item i
pu latent embedding of user u
qi latent embedding of item i
d dimension of the embedding
Θ learnable parameters in primary task
NU

u neighbor set of user u
N I

i neighbor set of item i
u+, u− positive and negative samples of user u
i+, i− positive and negative samples of item i
λU
u importance factor for user-related auxiliary tasks

λI
i importance factor for item-related auxiliary tasks

Λ include λU
u and λI

i
k a condition number to compute Θ∗(Λ)
D the diameter of search space for getting a proper Θ

4 METHODOLOGY

In this section, we introduce the proposed framework
shown in Figure 2, which integrates the auxiliary learning
in the recommendation task. We first introduce the primary
task (recommendation) in our model. Then we illustrate the
auxiliary task which consists of two main components: 1)
designing auxiliary tasks supporting the learning of the rec-
ommendation task, and 2) learning personalized parameters
to softly select auxiliary tasks and balance them via meta
learning. Lastly, we introduce the prediction and training
procedure of the proposed model, as well as the theoretical
analysis of the implicit gradient method.

4.1 Primary Task
The primary task in the proposed model is the user prefer-
ence modeling, which lies at the core of all recommender
systems. Based on the user-item interaction history and
probably other available metadata, the recommendation
model learns/constructs a scoring function to predict the
user preference levels of user u on a certain item i:

r̂ui = f(u, i;Θ) , (1)

where Θ is the learnable parameters in the primary task.
Popularized by the Netflix competition, the matrix factoriza-
tion model [15], [45] is a classical and effective realization:

f(u, i;Θ) = q⊤
i · pu , (2)

where pu ∈ Rd is the latent representation (embedding) of
user u, qi ∈ Rd is the latent representation of item i, d is
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Fig. 2. Overview of our proposed framework of MAL. It consists of one primary recommendation task (any gradient-based recommendation model
can be plugged in), two auxiliary tasks, and the meta learning framework. In each training update, firstly, the embeddings regarding specific user-
item interactions are specified, and are used to calculate the loss Lpri+aux(Θ,Λ) through the primary task and two well-designed auxiliary tasks.
Secondly, the loss Lpri+aux(Θ,Λ) passes through the inner stage of the meta learning framework to update Θ. Thirdly, building the connection
between the outer loss Lpri(Θ

∗(Λ)) and Λ by using a proxy Θ∗(Λ). Finally, the loss Lpri(Θ
∗(Λ)) passes through the outer stage of the meta

learning framework and uses the conjugate gradient (CG) algorithm to obtain the meta-gradient, then update Λ. GD denotes the gradient descent.

the dimension of the latent space, and · denotes the inner
product. The user preference on a certain item is measured
by the inner product between the latent representations
of users and items. Here, for the ease of illustration, we
only adopt the matrix factorization model as an example.
Indeed, other recommendation models like deep learning-
based methods, e.g., NeuMF [17] and LightGCN [24], can
be easily plugged into our framework (shown in Section 5).

To learn the user preference, one promising and widely-
used approach is the Bayesian Personalized Ranking
(BPR) [16], which is used to model the pair-wise preference
between an item i that user u has interacted with and a
randomly sampled item i′ that user u has not accessed. BPR
assumes that interacted items, which are more reflective of
a user’s preferences, should be assigned with higher prefer-
ence scores than unobserved ones. The objective function of
BPR is shown as follows:

Lpri(u, i, i
′;Θ) = − lnσ(r̂ui − r̂ui′) , (3)

where σ is the sigmoid function, and Θ represents the learn-
able parameters, e.g., pu and qi in the matrix factorization,
of the primary task.

4.2 Auxiliary Task
Auxiliary learning [8], [32] is a promising approach to
benefit the primary task, by training on additional auxiliary
tasks. The sharing of features across tasks brings additional
salient latent features, which can be hardly obtained from
solely training on the primary task. Thus the incorpora-
tion of auxiliary tasks is a potential direction to improve

the recommendation performance and bring other potential
benefits such as recommendation explainability. Then here
come two central questions: (i) what auxiliary tasks to con-
struct and (ii) how to learn these auxiliary tasks to benefit
the primary task.

Auxiliary Task Construction. To construct auxiliary
tasks in recommendation models, we resort to the user-
user and item-item relation learning, which complements
the user-item interaction learning. In fact, other useful aux-
iliary tasks can also be added but may need further feature
engineering and domain knowledge [8]. For simplicity, we
borrow the idea from user-based and item-based collabora-
tive filtering methods [10] to construct the similarity matrix
of users and items, respectively. Formally, given an observed
user-item interaction matrix R ∈ Rm×n (m users and n
items), we calculate the cosine similarity between each row
(user) and column (item), respectively, to get the pair-wise
similarity among users and items. Then we set a threshold
τ to select the high-value neighbors of users and items into
neighbor sets NU

u and N I
i of user u and item i, respectively.

These high-value neighbors of users and items are utilized
to model the intuition that similar users or items would
share similar interests or properties.

Auxiliary Task Learning. To learn from the high-value
neighbors of users and items, we employ the self-supervised
learning scheme by maximizing the mutual information
(MI) [46] between a user/item and its neighbors to im-
prove the representation effectiveness of users and items.
Specifically, MI measures the amount of information ob-
tained about a random variable X by observing some other
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random variable Y . Formally, the MI between X and Y is
defined as:

I (X;Y ) = DKL

(
p(x, y) ∥ p(x)p(y)

)
= Ep(x,y)

[
log

p(x, y)

p(x)p(y)

]
,

(4)

where p(x, y) denotes the joint density, p(x) and p(y) denote
marginal densities, and DKL denotes the Kullback-Leibler
(KL) divergence. However, directly maximizing the above
mutual information formulation is generally intractable [47],
[48] especially when involving complex deep learning mod-
els. Thus we turn to optimize the lower bound of MI. One
particular lower bound that has been shown working well
in practice is InfoNCE [49], which is based on the Noise
Contrastive Estimation [50]. Specifically, the InfoNCE loss is
formulated by:

LU
aux(u;Θ) = − log

(
es(u,u

+)∑
u− ̸∈NU

u
es(u,u−)

)
,

LI
aux(i;Θ) = − log

(
es(i,i

+)∑
i− ̸∈N I

i
es(i,i−)

)
,

(5)

where u+ is a similar neighbor of user u while u− is ran-
domly sampled and treated as negative samples. s(u, u+) =
p⊤
u+ · pu is a function to measure the agreement score

between u and u+. The item side also follows the same
manner. Intuitively, the optimization of InfoNCE loss aims
to assign higher agreement scores between the user or item
and its neighbors, whereas assigning lower scores on the
negative samples. Especially, when using only one negative
sample in the loss, the InfoNCE loss is equivalent to the
Bayesian Personalized Ranking (BPR) loss [51]. Then our
auxiliary tasks together with the primary recommendation
task can be formulated by:

Lpri(u, i, i
′
;Θ) + λU · LU

aux(u;Θ) + λI · LI
aux(i;Θ) , (6)

where λU and λI are used to control the contribution of the
auxiliary tasks.

4.3 Meta Auxiliary Learning

Although incorporating λU and λI along with auxiliary
tasks has already boosted the primary recommendation
task, it still yields two disadvantages. First, different users
or items may need different levels of auxiliary learning.
Thus adopting the same value for all users or items may
not release the full potential of the auxiliary learning mech-
anism. Second, treating λU and λI as hyper-parameters will
trigger tedious hyper-parameter tuning. When the number
of auxiliary tasks further increases, manually tuning these
hyper-parameters are almost unacceptable.

To tackle the aforementioned two problems, we first
model the contribution of auxiliary learning into a more
fine-grained level, i.e., modeling by the specific user and
item:

Lpri(u, i, i
′
;Θ) + σ(λU

u ) · LU
aux(u;Θ) + σ(λI

i ) · LI
aux(i;Θ) ,

(7)
where λU

u and λI
i represent the contribution magnitude of

the auxiliary learning for each user and item, respectively.

Next, we formulate the learning of the primary rec-
ommendation task along with auxiliary tasks as a meta-
learning problem, to adaptively adjust the importance of
finer levels of auxiliary learning:

min
Λ

∑
(u,i,i′ )∈Dmeta

Lpri

(
u, i, i′;Θ∗(Λ)

)
s.t.Θ∗(Λ) = argmin

Θ

∑
(u,i,i′ )∈Dtrain

Lpri(u, i, i
′
;Θ)+

σ(λU
u ) · LU

aux(u;Θ) + σ(λI
i ) · LI

aux(i;Θ) ,
(8)

where Λ includes λU
u and λI

i , Dtrain and Dmeta are con-
structed training data and meta data, respectively, and σ(·)
is the sigmoid function to make sure the value is within
(0, 1). Following [52], we randomly sample user-item in-
teractions to form Dmeta. For the ease of illustration, we
simplify the formulation of Eq. 8 without loss of generality
as:

min
Λ
Lpri( · ;Θ∗(Λ))

s.t.Θ∗(Λ) = argmin
Θ

Lpri+aux( · ;Θ,Λ) .
(9)

To optimize the above loss function, we adopt the one-
step stochastic gradient descent (SGD) trick to build the
proxy between Lpri (Eq. 9) and Λ:

Θ∗(Λ) ≈ Θ̃(Λ) = Θ− α∇ΘLpri+aux(Θ,Λ) , (10)

where α is the learning rate. Note that we do not numer-
ically evaluate compute Θ̃(Λ). Instead, we resort to the
computation graph of deep learning libraries (e.g., PyTorch),
where we treat Θ̃(Λ) as an intermediary node to connect
Lpri and Λ. Then by minimizing Lpri, the gradient can be
passed to Λ. Thus we can alternatively update Θ or Λ while
keep the other fixed.

4.4 Implicit Gradient Method

Although the bilevel optimization learning methods in Sec-
tion 4.3 can adaptively control the contribution of each
auxiliary task, it brings computation overheads. The reason
is that, when using the one-step SGD trick to update Λ,
the meta learning process requires calculating the second-
order derivative (a Hessian matrix), i.e., ∂Lpri(Θ

∗(Λ))
∂Λ , which

makes the update of Λ yield a longer gradient depen-
dency path and involve more computation. To overcome
this overhead, we borrow the idea from implicit gradient
method [53] to avoid the second-order derivative.

According to [53], the dependency between Θ and Λ
shrinks and vanishes as the number of gradient steps grows
when updating Λ, making meta learning difficult to train.
To prevent this from happening, we add a soft L2 norm be-
tween Θ and Λ in Lpri+aux(Θ,Λ), which can be expressed
as:

Lpri+aux(Θ,Λ)← Lpri+aux(Θ,Λ) +
γ

2
∥Θ−Λ∥2 , (11)

where γ is a hyper-parameter to control the regularization
strength. To make Θ and Λ have the same size, we multiply
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Λ with a trainable matrix and denoted the result as Λ. Thus,
from Eq. 9, we can derive:

Θ∗(Λ) = argmin
Θ

Lpri+aux(Θ,Λ)

=⇒∇Lpri+aux(Θ
∗(Λ)) + γ(Θ∗(Λ)−Λ) = 0

=⇒Θ∗(Λ) = Λ− 1

γ
∇Lpri+aux(Θ

∗(Λ))

(12)

When the derivative exists, we can differentiate Eq. 12 to
obtain:

∂Θ∗(Λ)

∂Λ
= I − 1

γ
∇2Lpri+aux(Θ

∗(Λ))
∂Θ∗(Λ)

∂Λ

=⇒∂Θ∗(Λ)

∂Λ
=

(
I +

1

γ
∇2Lpri+aux(Θ

∗(Λ))

)−1 (13)

Therefore, the Hessian matrix ∂Lpri(Θ
∗(Λ))

∂Λ can be refor-
mulated as:

∂Lpri(Θ
∗(Λ))

∂Λ
=

(
I +

1

γ
∇2Lpri+aux(Θ

∗(Λ)

)−1

·

∇Lpri(Θ
∗(Λ)) ,

(14)

However, the explicit form and the inverse of the matrix
in Eq. 14 to compute the Jacobian may be intractable in
large deep neural networks. Instead, we solve a quadratic
optimization problem of Eq. 15 and use an approximate as
the high-order gradient:

min
ω

1

2
ωT

(
I +

1

γ
∇2Lpri+aux(Θ

∗(Λ))

)
ω − ωT∇Lpri(Θ

∗(Λ)) .

(15)
Then we can use the conjugate gradient (CG) algorithm

to approximate this optimization problem. Compared to
computing the high-order derivative directly, the CG al-
gorithm has an excellent iterative convergence efficiency,
which is conducive to computing the approximate values.
Thus, when we fix Θ to update Λ, we use the CG algorithm
to reduce the computational burden.

4.5 Model Training and Prediction

By adding the regularization term in Eq. 9, we have the
overall loss function:

min
Λ
Lpri( · ;Θ∗(Λ))

s.t.Θ∗(Λ) = argmin
Θ

Lpri+aux( · ;Θ,Λ) +
γ

2
∥Θ−Λ∥2 ,

(16)
where γ is a hyper-parameter to control the effect of regu-
larization. We apply Adam [54] optimizer to update Θ, and
use implicit gradient algorithm mentioned in Section 4.4
to speed up the optimization of Λ. The detailed training
algorithm is shown in Algorithm 1 and Algorithm 2.

Recommendation. For each user u, we compute the
preference score r̂ui on each item i. Then the Top-K items
with larger prediction scores meanwhile not in the training
set will be recommended to user u.

Algorithm 1: Training algorithm of MAL

Input : Training data Dtrain and meta data
Dmeta, regularization parameter γ,
accuracy thresholds δ and δ

′
.

Initialize: parameters Θ, Λ
1 while not converged do
2 Dtrain

m = BatchSampler(Dtrain);
3 Dmeta

m = BatchSampler(Dmeta);
4 Fix Λ update Θ with Dtrain

m :
Θ← OPTΘ (Θ,∇ΘLpri+aux(Θ,Λ)) ;

5 Obtain Θ∗(Λ) with an iterative optimizer:
∥Θ∗(Λ)− argmin

Θ
Lpri+aux( · ;Θ,Λ)∥ ≤ δ ;

6 Compute the approximation of ∇ΛLpri:
∇ΛL̂pri= Implicit-gradient(Θ∗(Λ), γ, δ

′
) ;

7 Fix Θ update Λ with Dmeta
m :

Λ← OPTΛ

(
Λ,∇ΛL̂pri

)
;

8 end

Algorithm 2: Implicit gradient optimization

Input : Updated Θ∗(Λ), regularization parameter
γ, optimization threshold δ

′
.

1 Compute loss of primary task: l = Lpri

(
Θ∗(Λ)

)
;

2 Compute the outer-level gradient: v = ∇Θl ;
3 Use CG algorithm to compute g such that:

∥g−
(

I + 1
γ∇

2Lpri+aux(Θ
∗(Λ))

)−1
v∥ ≤ δ

′
;

Return: g

4.6 Theoretical Analysis
In Section 4.4, we adopt an implicit gradient optimization
method to update Λ. Here, we compare the implicit gra-
dient method (Section 4.3) with the second-order gradient
method (Section 4.4), and provide a theoretical analysis of
the reduction in terms of time complexity brought by this
implicit gradient method.

To discuss the time complexity for computing the meta-
gradient (∂Lpri(Θ

∗(Λ))
∂Λ ) when applying a δ−accurate inner

optimization, we first assume that Lpri+aux( · ;Θ,Λ) in
the inner optimization is a differentiable convex function.
We then assume that the condition number to compute
Θ∗(Λ) is a constant number k, which can be viewed as a
measure of the hardness to update Θ∗(Λ). But when we
use Eq. 15 to get the approximate solution of the high-
order gradient ωT , the condition number will only be-
come

√
k. This is because when using the implicit gradient

method to perform meta learning, we can turn the high-
order gradient into a quadratic optimization problem, which
makes it unnecessary to back-propagate gradients to the
inner optimization. Furthermore, we assume the diameter
of the search space for getting a proper Θ is D. Then the
computational complexity for finding a proper Θ of each
iteration is log (Dδ ), where δ is the accuracy threshold used
to control the tolerance of error.

Although this implicit gradient optimization method
can greatly reduce the computational complexity, it will
incur the bias for the meta gradient because it obtains an
approximation of Θ∗(Λ). By introducing an approximate
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threshold δ in Algorithm 1, it computes an approximate
Θ∗(Λ) with the following guarantee:

∥Θ∗(Λ)− argmin
Θ
Lpri+aux( · ;Θ,Λ)∥ ≤ δ . (17)

Therefore, when the implicit gradient method (Sec-
tion 4.4) is used to update Λ, the computational complexity
will reduce from k log (Dδ ) to

√
k log (Dδ ) compared to the

second-order gradient method (Section 4.3). Correspond-
ingly, it will bring δ error when calculating Θ∗(Λ).

5 EVALUATION

In this section, we first describe the experimental setup. We
then report the results of the conducted experiments and
demonstrate the effectiveness of the proposed modules.

5.1 Datasets

The proposed model is evaluated on four real-world
datasets from various domains with different sparsities:
Amazon-Books, Amazon-CDs, Gowalla and MovieLens-20M.
The Amazon-Books and Amazon-CDs datasets are adopted
from the Amazon review dataset with different categories,
i.e., CDs and Books, which cover a large amount of user-
item interaction data, e.g., user ratings and reviews. The
Gowalla is a point-of-interest check-in dataset obtained from
Gowalla website. MovieLens-20M is a user-movie dataset
collected from the MovieLens website, which has 20 million
user-movie interactions. All the above datasets follow the
10-core setting to ensure that each user and item have at
least ten interactions. The data statistics after preprocessing
are shown in Table 2.

For each dataset, 80% of interaction data of each user is
randomly selected to constitute the training set, and we treat
the remaining 20% as the test set. From the training set, 10%
of interactions are randomly selected as the validation set to
tune hyper-parameters. The experiments of all the models
are executed five times and the average result is reported.

TABLE 2
The statistics of the datasets.

Dataset #Users #Items #Interactions Density

CDs 24,934 24,634 478,048 0.078%
Gowalla 29,858 40,981 1,027,370 0.084%

Books 77,754 66,963 2,517,343 0.048%
ML20M 129,780 13,663 9,926,480 0.560%

5.2 Evaluation Metrics

We evaluate all the methods in terms of Recall@K, NDCG@K
and Precision@K. For each user, Recall@K (R@K) indicates
what percentage of her rated items emerge in the top K
recommended items. NDCG@K (N@K) is the normalized
discounted cumulative gain at K, which takes the position
of correctly recommended items into account. Precision@K
(P@K) indicates what percentage of ground-truth items in
the top K recommended items.

They are:

Recall@K =
1

M

M∑
i=1

Xi(K) ∩ Ti
|Ti|

,

NDCG@K =
1

M

M∑
i=1

∑
j∈Ti

1

log2(rank(j)+1)

IDCG (min(K, |Ti|))
,

Precision@K =
1

M

M∑
i=1

Xi(K) ∩ Ti
|Xi(K)|

,

(18)

where IDCG(K) =
∑K

j=1
1

log2(j+1) , M is the number of
users, Xi(K) is a ordered set of top-k recommended items
for user i excluding the items in the training set, and Ti is
a set of ground-truth items to be evaluated. rank(j) is the
position of item j in the recommendation set Xi(K).

5.3 Methods Studied

To demonstrate the effectiveness of our framework, we
compare to the following recommendation methods:

• MF [16]: a matrix factorization (MF) model optimized
by the Bayesian personalized ranking (BPR) loss, which
is a classical method for learning pair-wise item rank-
ings.

• NeuMF [17]: a typical recommendation algorithm
based on deep learning, which combines the traditional
matrix factorization and multi-layer perceptrons.

• CMN [55]: a classic memory-based model, which uti-
lizes the advantages of the global structure of the latent
factor model and the structure based on local neighbor-
hoods.

• GC-MC [56]: a model designed to employ a graph
convolutional network on graph-structured data.

• Mult-VAE [57]: an item-based CF method based on the
variational autoencoder (VAE).

• NGCF [58]: capturing the user-item interactions with
a bipartite graph, and exploiting the user-item graph
structure by propagating embeddings.

• RecVAE [59]: a VAE-based model which introduces a
mixture of Gaussian priors and the latent code distri-
bution in the VAE, and an alternating update method
in the encoder and decoder.

• LightGCN [24]: learning user and item embeddings by
linearly propagation on the user-item interaction graph,
and using the weighted sum of the embeddings learned
at all layers as the final embedding.

• SinkhornCF [60]: a method which is based on the
Sinkhorn divergence, achieving recommendation by
considering the item-similarity.

• DCF [61]: a model which uses factor-level attention to
capture the fine-grained representations of the implicit
embedding and employs a relation aggregator to learn
the explicit embedding.

• SGL [62]: a graph-based model which generates sub-
graphs through node dropout, edge dropout and ran-
dom walk, and constructs self-supervised contrastive
learning tasks on different subgraphs.

• IMP-GCN [63]: a model aims to perform the graph con-
volution network (GCN) on subgraphs which consist of
users with similar interests and their interacted items.
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TABLE 3
The performance comparison of all methods in terms of Recall@K. We present the relative improvements of our framework over the base model in

bold. Imp. denotes the improvement.

Methods
CDs Books Gowalla ML20m

R@5 R@10 R@15 R@20 R@5 R@10 R@15 R@20 R@5 R@10 R@15 R@20 R@5 R@10 R@15 R@20

NeuMF 0.0433 0.0702 0.0906 0.1087 0.0275 0.0468 0.0628 0.0778 0.0689 0.0961 0.1199 0.1348 0.1075 0.1703 0.2196 0.2596
CMN 0.0445 0.0711 0.0919 0.1094 0.0279 0.0472 0.0638 0.0785 0.0701 0.0978 0.1213 0.1359 0.1098 0.1742 0.2238 0.2647

GC-MC 0.0439 0.0708 0.0913 0.1090 0.0281 0.0475 0.0641 0.0788 0.0684 0.0954 0.1191 0.1342 0.1084 0.1728 0.2216 0.2621
SinkhornCF 0.0503 0.0786 0.1029 0.1208 0.0376 0.0622 0.0814 0.0968 0.0754 0.1091 0.1342 0.1558 0.1187 0.1886 0.2412 0.2868

MF 0.0453 0.0724 0.0935 0.1117 0.0286 0.0483 0.0649 0.0792 0.0728 0.1043 0.1274 0.1472 0.1106 0.1762 0.2263 0.2681
MF-MAL 0.0561 0.0885 0.1133 0.1320 0.0388 0.0651 0.0857 0.1038 0.0773 0.1117 0.1374 0.1598 0.1217 0.1938 0.2481 0.2954

Imp. 23.84% 22.24% 21.18% 18.17% 35.66% 34.78% 32.05% 31.06% 6.18% 7.09% 7.85% 8.56% 10.04% 9.99% 9.63% 10.18%

MultVAE 0.0507 0.0791 0.1035 0.1218 0.0375 0.0623 0.0812 0.0966 0.0759 0.1096 0.1347 0.1564 0.1184 0.1882 0.2409 0.2861
MultVAE-MAL 0.0583 0.0921 0.1178 0.1354 0.0454 0.0787 0.1018 0.1184 0.0818 0.1150 0.1402 0.1660 0.1261 0.2008 0.2558 0.3027

Imp. 14.99% 16.43% 13.82% 11.17% 21.07% 26.32% 25.37% 22.57% 7.77% 4.93% 4.08% 6.14% 6.50% 6.70% 6.19% 5.80%

NGCF 0.0464 0.0737 0.0948 0.1132 0.0364 0.0591 0.0768 0.0919 0.0747 0.1068 0.1312 0.1517 0.1150 0.1860 0.2396 0.2830
NGCF-MAL 0.0569 0.0903 0.1151 0.1339 0.0446 0.0753 0.0961 0.1127 0.0802 0.1141 0.1389 0.1613 0.1248 0.1989 0.2534 0.2997

Imp. 22.63% 22.52% 21.41% 18.29% 22.53% 27.41% 25.13% 22.63% 7.36% 6.84% 5.87% 6.33% 8.52% 6.94% 5.76% 5.90%

RecVAE 0.0529 0.0827 0.1081 0.1267 0.0390 0.0648 0.0842 0.1005 0.0784 0.1137 0.1400 0.1617 0.1232 0.1956 0.2503 0.2982
RecVAE-MAL 0.0565 0.0880 0.1138 0.1326 0.0403 0.0672 0.0878 0.1049 0.0812 0.1181 0.1461 0.1696 0.1303 0.2061 0.2625 0.3116

Imp. 6.78% 6.43% 5.29% 4.69% 3.48% 3.79% 4.19% 4.36% 3.54% 3.88% 4.39% 4.87% 5.83% 5.35% 4.88% 4.48%

LightGCN 0.0557 0.0879 0.1130 0.1323 0.0478 0.0798 0.1056 0.1220 0.0891 0.1268 0.1552 0.1785 0.1286 0.2027 0.2578 0.3040
LightGCN-MAL 0.0602 0.0947 0.1197 0.1395 0.0496 0.0832 0.1113 0.1287 0.0921 0.1315 0.1613 0.1856 0.1368 0.2154 0.2733 0.3214

Imp. 8.08% 7.74% 5.93% 5.44% 3.77% 4.26% 5.40% 5.49% 3.37% 3.71% 3.93% 3.98% 6.38% 6.27% 6.01% 5.72%

DCF 0.0509 0.0805 0.1033 0.1227 0.0394 0.0645 0.0841 0.0991 0.0793 0.1153 0.1405 0.1629 0.1238 0.1967 0.2543 0.3005
DCF-MAL 0.0547 0.0860 0.1089 0.1287 0.0410 0.0675 0.0889 0.1049 0.0822 0.1199 0.1466 0.1702 0.1321 0.2094 0.2697 0.3181

Imp. 7.52% 6.82% 5.43% 4.86% 4.27% 4.69% 5.72% 5.82% 3.76% 3.98% 4.38% 4.48% 6.72% 6.43% 6.08% 5.86%

IMP-GCN 0.0582 0.0920 0.1185 0.1386 0.0500 0.0837 0.1106 0.1277 0.0928 0.1324 0.1616 0.1864 0.1346 0.2130 0.2710 0.3186
IMP-GCN-MAL 0.0620 0.0978 0.1243 0.1448 0.0514 0.0864 0.1149 0.1337 0.0950 0.1359 0.1664 0.1923 0.1410 0.2226 0.2818 0.3302

Imp. 6.49% 6.20% 4.87% 4.48% 2.76% 3.14% 3.88% 4.67% 2.28% 2.59% 2.99% 3.19% 4.80% 4.49% 3.98% 3.65%

SGL 0.0606 0.0911 0.1138 0.1328 0.0505 0.0866 0.1139 0.1313 0.0878 0.1239 0.1536 0.1753 0.1378 0.2184 0.2789 0.3272
SGL-MAL 0.0630 0.0948 0.1182 0.1368 0.0543 0.0902 0.1154 0.1331 0.0892 0.1252 0.1553 0.1772 0.1427 0.2214 0.2843 0.3320

Imp. 3.96% 4.06% 3.87% 3.01% 7.52% 4.16% 1.32% 1.37% 1.59% 1.07% 1.09% 1.08% 3.56% 1.37% 1.94% 1.46%

TABLE 4
The performance comparison of all methods in terms of NDCG@K. We present the relative improvements of our framework over the base model

in bold. Imp. denotes the improvement.

Methods
CDs Books Gowalla ML20m

N@5 N@10 N@15 N@20 N@5 N@10 N@15 N@20 N@5 N@10 N@15 N@20 N@5 N@10 N@15 N@20

NeuMF 0.0377 0.0363 0.0360 0.0358 0.0340 0.0326 0.0320 0.0317 0.1052 0.0930 0.0899 0.0884 0.2437 0.2196 0.2083 0.2018
CMN 0.0385 0.0371 0.0368 0.0366 0.0352 0.0338 0.0331 0.0328 0.1067 0.0948 0.0916 0.0902 0.2475 0.2232 0.2115 0.2046

GC-MC 0.0380 0.0367 0.0363 0.0361 0.0347 0.0332 0.0326 0.0323 0.1073 0.0952 0.0922 0.0908 0.2486 0.2229 0.2125 0.2053
SinkhornCF 0.0430 0.0416 0.0413 0.0409 0.0440 0.0426 0.0419 0.0416 0.1123 0.1004 0.0971 0.0958 0.2641 0.2406 0.2294 0.2217

MF 0.0392 0.0378 0.0374 0.0371 0.0359 0.0345 0.0339 0.0335 0.1090 0.0978 0.0947 0.0932 0.2537 0.2299 0.2188 0.2122
MF-MAL 0.0479 0.0471 0.0464 0.0459 0.0468 0.0451 0.0442 0.0438 0.1162 0.1042 0.1008 0.0991 0.2792 0.2517 0.2387 0.2313

Imp. 22.19% 24.60% 24.06% 23.72% 30.36% 30.72% 30.38% 30.75% 6.61% 6.54% 6.44% 6.33% 10.05% 9.48% 9.10% 9.00%

MultVAE 0.0424 0.0411 0.0407 0.0404 0.0436 0.0423 0.0415 0.0412 0.1118 0.0996 0.0967 0.0952 0.2608 0.2387 0.2276 0.2203
MultVAE-MAL 0.0504 0.0498 0.0492 0.0485 0.0511 0.0489 0.0476 0.0464 0.1225 0.1113 0.1057 0.1031 0.2843 0.2598 0.2453 0.2380

Imp. 18.87% 21.17% 20.88% 20.05% 17.20% 15.60% 14.70% 12.62% 9.57% 11.75% 9.31% 8.30% 9.01% 8.84% 7.78% 8.03%

NGCF 0.0402 0.0388 0.0385 0.0383 0.0429 0.0412 0.0406 0.0403 0.1108 0.0993 0.0960 0.0945 0.2560 0.2329 0.2222 0.2147
NGCF-MAL 0.0491 0.0484 0.0476 0.0469 0.0498 0.0476 0.0463 0.0457 0.1214 0.1097 0.1045 0.1023 0.2811 0.2556 0.2414 0.2347

Imp. 22.14% 24.74% 23.64% 22.45% 16.08% 15.53% 14.04% 13.40% 9.57% 10.47% 8.85% 8.25% 9.80% 9.75% 8.64% 9.32%

RecVAE 0.0442 0.0430 0.0425 0.0419 0.0457 0.0439 0.0430 0.0427 0.1163 0.1043 0.1006 0.0994 0.2703 0.2484 0.2369 0.2297
RecVAE-MAL 0.0470 0.0459 0.0454 0.0446 0.0491 0.0471 0.0460 0.0455 0.1220 0.1092 0.1050 0.1036 0.2816 0.2593 0.2481 0.2416

Imp. 6.25% 6.89% 6.74% 6.49% 7.45% 7.27% 6.92% 6.55% 4.87% 4.77% 4.42% 4.18% 4.17% 4.39% 4.73% 5.19%

LightGCN 0.0496 0.0483 0.0478 0.0474 0.0586 0.0568 0.0559 0.0556 0.1261 0.1143 0.1125 0.1112 0.2807 0.2586 0.2498 0.2422
LightGCN-MAL 0.0531 0.0518 0.0512 0.0509 0.0638 0.0620 0.0612 0.0608 0.1310 0.1198 0.1163 0.1148 0.2934 0.2711 0.2632 0.2556

Imp. 7.06% 7.25% 7.11% 7.38% 8.87% 9.15% 9.48% 9.35% 3.89% 4.81% 3.38% 3.24% 4.52% 4.83% 5.36% 5.53%

DCF 0.0442 0.0427 0.0421 0.0418 0.0470 0.0449 0.0442 0.0438 0.1205 0.1080 0.1056 0.1027 0.2786 0.2539 0.2442 0.2361
DCF-MAL 0.0471 0.0456 0.0449 0.0445 0.0507 0.0483 0.0474 0.0468 0.1248 0.1131 0.1094 0.1061 0.2908 0.2658 0.2563 0.2486

Imp. 6.59% 6.82% 6.62% 6.52% 7.88% 7.46% 7.16% 6.82% 3.57% 4.76% 3.58% 3.32% 4.39% 4.69% 4.93% 5.30%

IMP-GCN 0.0520 0.0505 0.0501 0.0499 0.0613 0.0599 0.0585 0.0586 0.1307 0.1187 0.1168 0.1153 0.2972 0.2727 0.2641 0.2550
IMP-GCN-MAL 0.0555 0.0541 0.0536 0.0534 0.0664 0.0651 0.0638 0.0639 0.1355 0.1238 0.1208 0.1189 0.3099 0.2852 0.2772 0.2685

Imp. 6.83% 7.02% 6.92% 7.07% 8.26% 8.62% 9.16% 9.08% 3.65% 4.28% 3.43% 3.19% 4.28% 4.60% 4.97% 5.28%

SGL 0.0542 0.0528 0.0524 0.0522 0.0652 0.0643 0.0630 0.0628 0.1235 0.1117 0.1098 0.1094 0.3021 0.2803 0.2714 0.2626
SGL-MAL 0.0568 0.0547 0.0542 0.0538 0.0673 0.0661 0.0647 0.0641 0.1256 0.1148 0.1125 0.1119 0.3098 0.2864 0.2765 0.2684

Imp. 4.80% 3.52% 3.44% 3.07% 3.22% 2.80% 2.70% 2.07% 1.70% 2.78% 2.46% 2.29% 2.55% 2.18% 1.88% 2.21%
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TABLE 5
he performance comparison of all methods in terms of Precision@K. We present the relative improvements of our framework over the base model

in bold. Imp. denotes the improvement.

Methods
CDs Books Gowalla ML20m

P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20

NeuMF 0.0327 0.0268 0.0231 0.0213 0.0312 0.0267 0.0243 0.0216 0.0830 0.0590 0.0498 0.0418 0.2281 0.1903 0.1662 0.1504
CMN 0.0334 0.0271 0.0235 0.0211 0.0315 0.0271 0.0246 0.0218 0.0845 0.0609 0.0500 0.0423 0.2353 0.1920 0.1696 0.1529

GC-MC 0.0330 0.0258 0.0235 0.0207 0.0317 0.0273 0.0248 0.0221 0.0801 0.0564 0.0489 0.0405 0.2254 0.1937 0.1675 0.1512
SinkhornCF 0.0370 0.0294 0.0259 0.0239 0.0409 0.0334 0.0301 0.0277 0.0904 0.0660 0.0559 0.0483 0.2503 0.2126 0.1810 0.1675

MF 0.0337 0.0271 0.0238 0.0215 0.0329 0.0282 0.0254 0.0234 0.0876 0.0633 0.0521 0.0454 0.2338 0.1933 0.1695 0.1533
MF-MAL 0.0410 0.0331 0.0284 0.0253 0.0428 0.0363 0.0323 0.0295 0.0937 0.0684 0.0563 0.0491 0.2586 0.2164 0.1874 0.1686

Imp. 21.66% 22.14% 19.33% 17.67% 30.09% 28.72% 27.17% 26.07% 6.96% 8.06% 8.06% 8.15% 10.61% 11.95% 10.56% 9.98%

MultVAE 0.0375 0.0294 0.0264 0.0238 0.0406 0.0331 0.0298 0.0272 0.0918 0.0672 0.0559 0.0489 0.2512 0.2063 0.1826 0.1645
MultVAE-MAL 0.0425 0.0337 0.0300 0.0266 0.0485 0.0405 0.0361 0.0328 0.0976 0.0701 0.0584 0.0515 0.2656 0.2194 0.1931 0.1726

Imp. 13.24% 14.45% 13.39% 11.74% 19.56% 22.43% 21.29% 20.75% 6.34% 4.23% 4.64% 5.35% 5.74% 6.35% 5.75% 4.96%

NGCF 0.0348 0.0274 0.0239 0.0218 0.0397 0.0320 0.0292 0.0264 0.0898 0.0643 0.0538 0.0466 0.2409 0.2040 0.1786 0.1622
NGCF-MAL 0.0422 0.0333 0.0287 0.0261 0.0478 0.0395 0.0358 0.0319 0.0955 0.0682 0.0569 0.0491 0.2594 0.2186 0.1897 0.1712

Imp. 21.43% 21.53% 20.35% 19.55% 20.37% 23.34% 22.77% 20.86% 6.35% 6.12% 5.87% 5.35% 7.68% 7.12% 6.24% 5.58%

RecVAE 0.0387 0.0317 0.0270 0.0244 0.0426 0.0361 0.0320 0.0292 0.0944 0.0681 0.0579 0.0494 0.2660 0.2120 0.1872 0.1677
RecVAE-MAL 0.0409 0.0333 0.0283 0.0255 0.0442 0.0373 0.0333 0.0305 0.0977 0.0706 0.0602 0.0514 0.2796 0.2227 0.1963 0.1755

Imp. 5.48% 5.24% 4.76% 4.23% 3.75% 3.35% 4.13% 4.33% 3.53% 3.76% 3.96% 4.01% 5.13% 5.03% 4.85% 4.63%

LightGCN 0.0409 0.0331 0.0296 0.0253 0.0442 0.0378 0.0351 0.0294 0.1050 0.0793 0.0653 0.0564 0.2700 0.2185 0.1899 0.1750
LightGCN-MAL 0.0439 0.0354 0.0312 0.0269 0.0458 0.0392 0.0366 0.0315 0.1082 0.0818 0.0676 0.0584 0.2854 0.2311 0.2006 0.1843

Imp. 7.36% 6.95% 5.25% 6.32% 3.63% 3.70% 4.13% 7.14% 3.05% 3.26% 3.51% 3.70% 5.70% 5.75% 5.64% 5.34%

DCF 0.0382 0.0303 0.0263 0.0236 0.0421 0.0357 0.0315 0.0288 0.0964 0.0706 0.0576 0.0509 0.2616 0.2184 0.1905 0.1734
DCF-MAL 0.0406 0.0322 0.0279 0.0249 0.0438 0.0372 0.0330 0.0302 0.0995 0.0731 0.0598 0.0528 0.2777 0.2312 0.2013 0.1829

Imp. 6.35% 6.42% 5.96% 5.74% 4.05% 4.13% 4.73% 4.85% 3.24% 3.58% 3.79% 3.91% 6.13% 5.91% 5.70% 5.48%

IMP-GCN 0.0431 0.0338 0.0300 0.0268 0.0463 0.0395 0.0377 0.0323 0.1108 0.0789 0.0660 0.0570 0.2842 0.2345 0.2007 0.1810
IMP-GCN-MAL 0.0456 0.0356 0.0316 0.0281 0.0475 0.0407 0.0389 0.0334 0.1130 0.0808 0.0678 0.0587 0.2963 0.2442 0.2089 0.1878

Imp. 5.78% 5.53% 5.13% 4.85% 2.68% 2.96% 3.14% 3.52% 2.03% 2.44% 2.68% 2.97% 4.25% 4.14% 4.07% 3.79%

SGL 0.0427 0.0345 0.0292 0.0259 0.0466 0.0402 0.0381 0.0327 0.1014 0.0750 0.0613 0.0539 0.2903 0.2387 0.2057 0.1858
SGL-MAL 0.0448 0.0354 0.0302 0.0265 0.0481 0.0427 0.0418 0.0344 0.1027 0.0761 0.0623 0.0548 0.2945 0.2415 0.2084 0.1879

Imp. 4.92% 2.61% 3.42% 2.32% 3.22% 6.22% 9.71% 5.11% 1.28% 1.47% 1.63% 1.67% 1.45% 1.17% 1.31% 1.13%

• Base-MAL: our model, integrating other base models,
such as MF, LightGCN, and IMP-GCN, into our meta
auxiliary learning framework, which takes two self-
supervised learning tasks regarding users and items,
respectively, as auxiliary tasks optimized by the meta
learning framework.

5.4 Experiment Settings

In the experiments, the latent dimension of all models is
set to 50 for a fair comparison. In order to show the best
performance of the baseline methods, we initialize the pa-
rameters as proposed in the corresponding papers, and we
have fine-tuned the parameters to improve the performance.
We search for the learning rate over the range [0.0001,
0.0005, 0.001, 0.005, 0.01], and tune the coefficient of L2
normalization amongst [0.0001, 0.001, ..., 0.1]. The dropout
ratio is selected in the range of [0.0, 0.1, ..., 0.9] to prevent
over-fitting. Besides, we employ the node dropout ratio is
tuned in [0.0, 0.1, ..., 0.9] for GM-MC and NGCF. For
NeuMF, we employ three hidden layers for MLP, and keep
the dimension of each hidden layer the same. Regarding
CMN, the number of hops is tuned over the values [1,
2, 3]. For Mult-VAE, the model architecture we use is the
suggested one in the paper: 600 → 200 → 600. For NGCF,
we test the layer number over the values [1, 2, 3, 4]. For
RecVAE, we keeps the sample times parameter of encoder
and decoder satisfy Menc = 3Mdec. Also, the Bernoulli noise
parameter µnoise is set to 0.5. Regarding DCF, the disagree-
ment regularization weight λ1 are searched in [0.000001,

0.00001, ..., 0.001]. For SinkhornCF, we set the hyper-
parameter ε = 1.0 which controls the smoothness of the
optimization objective and the interaction number K = 5.
For SGL, we selcet Edge Dropout method, and tune λ1

within the range of [0.005, 0.01, 0.05, 0.1, 0.5, 1.0]. For
IMP-GCN, the L2 regularization coefficient is searched in
[0.00001, 0.0001, ..., 0.01]. For the model with the MAL
framework, the threshold τ which is used when selecting
the neighbors of users/items is tested over the values [0.1,
0.2, ..., 0.5]. The λU and λI are initialized from the range
[0.0, 0.1, ..., 1.0]. The batch size is set to 5000. The conjugate
gradient step is set to 2. Hyper-parameters are tuned by
the grid search on the validation set. Our experiments are
conducted with PyTorch running on GPU machines (Nvidia
Titan RTX).

5.5 Performance Comparison

Tables 3, 4, 5 and Figure 3 present the performance of
different models in terms of Recall@K, NDCG@K, and Preci-
sion@K on four datasets, respectively. Due to the space limit,
Figure 3 does not demonstrate the result of Precison@K.

Observations about our model. First, IMP-GCN-MAL,
which adopts the IMP-GCN as the base model integrated
into our MAL framework, achieves the best performance for
all evaluation metrics on all four datasets. This illustrates
the superiority and flexibility of our framework. Second,
the performance of seven base models with our MAL
framework is better than the corresponding original base
model. One major reason is that all the base models only
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(a) Recall@k on CDs (b) NDCG@k on CDs

(c) Recall@k on Books (d) NDCG@k on Books

(e) Recall@k on Gowalla (f) NDCG@k on Gowalla

(g) Recall@k on ML20m (h) NDCG@k on ML20m

Fig. 3. The performance comparison of Base-MAL on all datasets.

focus on the primary recommendation task without consid-
ering incorporating additional useful features from potential
auxiliary tasks. Third, IMP-GCN-MAL outperforms MF-
MAL, MultVAE-MAL, and LightGCN-MAL. Even though
these seven base models are developed within the same
MAL framework, IMP-GCN has demonstrated its superior
performance comparing with a number of state-of-the-art
methods [63] on the primary recommendation task. Fourth,
the base models with our MAL framework obtain better
results than SinkhornCF. Although SinkhornCF is based on
the Sinkhorn divergence [64] and utilizes the information of
item similarities in its loss, it neglects the helpful informa-
tion between users, which is well-modeled as an auxiliary
task in our MAL framework. Fifth, MF-MAL, MultVAE-
MAL, LightGCN-MAL achieve better performance than
NeuMF, CMN, GC-MC, and NGCF. Although NeuMF,
CMN, GC-MC, and NGCF model first-order and high-
order connectivities between users and items, they fail to

model the potential information between users and between
items. On the other hand, MAL introduces auxiliary tasks
to flexibly induce extra useful information for learning
better embedding representations. Furthermore, MAL also
applies meta learning to distinguish the importance of each
auxiliary task. Sixth, LightGCN-MAL, and MF-MAL obtain
better results than Mult-VAE. One possible reason is that
Mult-VAE adopts a binary cross-entropy loss which is not
tailored to the implicit feedback in the recommendation. By
contrast, the primary task of LightGCN-MAL and MF-MAL
is the BPR loss which can leverage the implicit feedback
effectively.

Other observations. First, IMP-GCN yields the best
results among all baseline methods, which confirms the
results reported in [63]. Second, NGCF outperforms NeuMF
and GC-MC. By stacking multiple embedding propagation
layers, NGCF is capable of exploring the high-order connec-
tivity in an explicit way, while NeuMF and GC-MC only
utilize the first-order neighbors to guide the representation
learning. Third, CMN generally performs better than GC-
MC on most datasets. One major reason is that CMN has a
neural attention mechanism, which can specify the attentive
weight of each neighboring user, rather than the same
weight used in GC-MC. Fourth, Mult-VAE achieves better
performance than NGCF in most cases. One possible reason
is that the polynomial likelihood is particularly suitable for
modeling the implicit feedback data. Fifth, RecVAE per-
forms better than Mult-VAE. The reason is presumably that
the alternating update of the encoder and decoder training
methods facilitate the model training. Sixth, DCF outper-
forms NGCF. One possible reason is that DCF decomposes
users and items into multiple factor-level representations to
characterize fine-grained preferences. Seventh, SinkhornCF
outperforms MF. One major reason is that SinkhornCF in-
duces fine topology by considering the item similarity, while
MF only considers the feedback information between users
and items. Eighth, IMP-GCN achieves better performance
than LightGCN. IMP-GCN constructs subgraphs of users
with similar interests and their interacted items. On top of
these, IMP-GCN performs the high-order graph convolution
on these subgraphs, while LightGCN only performs the
high-order graph convolution for the graph with all users.

TABLE 6
The ablation analysis. U denotes the user auxiliary task, I denotes the

item auxiliary task, and M denotes meta learning.

Architecture
CDs Books

R@10 N@10 P@10 R@10 N@10 P@10

(1) MF 0.0724 0.0378 0.0271 0.0483 0.0345 0.0282
(2) MF+U 0.0748 0.0394 0.0279 0.0571 0.0387 0.0317
(3) MF+I 0.0793 0.0401 0.0290 0.0598 0.0392 0.0323
(4) MF+U+M 0.0765 0.0409 0.0283 0.0595 0.0401 0.0319
(5) MF+I+M 0.0818 0.0413 0.0294 0.0602 0.0398 0.0325
(6) MF+U+I 0.0858 0.0448 0.0312 0.0638 0.0436 0.0346
(7) MF-MAL 0.0885 0.0471 0.0331 0.0651 0.0451 0.0363

(1) LightGCN 0.0879 0.0483 0.0331 0.0798 0.0568 0.0378
(2) LightGCN+U 0.0891 0.0488 0.0335 0.0803 0.0577 0.0380
(3) LightGCN+I 0.0908 0.0496 0.0339 0.0811 0.0591 0.0382
(4) LightGCN+U+M 0.0897 0.0491 0.0334 0.0807 0.0583 0.0379
(5) LightGCN+I+M 0.0918 0.0502 0.0341 0.0816 0.0599 0.0385
(6) LightGCN+U+I 0.0932 0.0511 0.0347 0.0824 0.0611 0.0388
(7) LightGCN-MAL 0.0947 0.0518 0.0354 0.0832 0.0620 0.0392
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5.6 Ablation Analysis

To verify the effectiveness of the proposed MAL framework,
we conduct an ablation study in Table 6. These demonstrate
the contribution of each module to the MAL framework.
Due to the space limit, we only report the result of MF-MAL
and LightGCN-MAL on the Amazon-CDs and Amazon-
Books datasets. Since MF-MAL and LightGCN-MAL have
the same ablation setting, we omit the description of
LightGCN-MAL as follows. In (1), we use the classical MF
optimized by the BPR loss. In (2), we integrate the auxiliary
task regarding users into MF, where the value of λU is
selected by a grid search. In (3), we integrate the auxiliary
task regarding items into MF, where the value of λI is also
determined by the grid search. In (4), we add the meta
learning scheme to (2). In (5), we add the meta learning
scheme to (3). In (6), we integrate user-based auxiliary tasks
and item-based auxiliary tasks in MF, where λU and λI use
the same value of which in (2) and (3). In (7), we present
the overall MF-MAL model to show the effectiveness of our
framework.

From the results shown in Table 6, we make the fol-
lowing observations. First, comparing (1), (2), and (3), we
can observe that the auxiliary tasks play an important role
in improving the performance of the primary task. Also,
the auxiliary tasks of users and items may have different
magnitudes of contributions. Second, from (2), (3), (4), and
(5), we observe that by utilizing the meta learning scheme,
the performance of (2) and (3) can be further improved.
One major reason is that meta learning can adaptively
adjust the importance of the auxiliary task to facilitate the
primary recommendation task. Third, from (2), (3), and (6),
we observe that the use of both auxiliary tasks together can
achieve better performance than solely using one. Fourth,
from (6) and (7), we can observe that our framework is good
at coordinating these auxiliary tasks.

(a) λU of MF-MAL (b) λI of MF-MAL

(c) λU of LightGCN-MAL (d) λI of LightGCN-MAL

Fig. 4. The variation of hyper-parameters λU and λI .

5.7 Influence of Adaptive λU and λI

To measure the influence of meta learning in our framework,
we fix either λU or λI as hyper-parameters to demonstrate

the dynamic contributions of the auxiliary tasks. We con-
duct experiments of MF-MAL and LightGCN-MAL on the
Amazon-Books dataset. The experimental results are shown
in Figure 4. The result of other methods has a similar trend.

From the results in the figure 4, we observe that the value
of the parameters λU and λI significantly affect the final
recommendation performance. If these parameters are not
selected properly, the performance of the recommendation
will drop by about 6%. In addition, we can also obverse that
when one of the parameters (λU and λI ) is fixed, the optimal
performance can not match the results obtained by our meta
learning framework. This result adequately demonstrates
that fine-grained and adaptive regularization can improve
the performance of recommendations.

5.8 Influence of Implicit Gradient Method

In Section 4.4, we conduct a theoretical analysis of the pro-
posed implicit gradient method, showing that this method
is theoretically efficient in terms of time complexity and ac-
curacy when updating Λ. In this section, we design a series
of experiments with the goal of answering the following two
questions: (1) What is the performance change in the recom-
mendation result when using the implicit gradient method
(Section 4.4) to update Λ instead of using the second-order
gradient method (Section 4.3)? (2) What would the training
time be when using the implicit gradient method to up-
date Λ compared with the second-order gradient method?
To answer these two questions, we conduct experiments
regarding MF-MAL and LightGCN-MAL on Amazon-Books
and Amazon-CDs. The performance of other methods has
similar trends.

TABLE 7
The recommendation performance with different updating methods

regarding Λ. SOG denotes the second-order gradient method
(Section 4.3), and IG denotes the implicit gradient method

(Section 4.4).

Method
CDs Books

R@10 N@10 P@10 R@10 N@10 P@10

MF-MAL (SOG) 0.0891 0.0474 0.0335 0.0655 0.0456 0.0367
MF-MAL (IG) 0.0885 0.0471 0.0331 0.0651 0.0451 0.0363

LightGCN-MAL (SOG) 0.0952 0.0522 0.0360 0.0834 0.0625 0.0393
LightGCN-MAL (IG) 0.0947 0.0518 0.0354 0.0832 0.0620 0.0392

For question (1), the second-order gradient method ap-
plies the one-step SGD which mentioned in Eq. 10 as the
bridge to connect Lpri( · ;Θ∗(Λ)) and Λ. Table 7 shows the
recommendation results when using the implicit gradient
method and second-order gradient descent to update Λ,
respectively. We find that when the implicit gradient method
is used, the overall recommendation result is slightly lower
than using the second-order gradient method. This is consis-
tent with the theoretical analysis we have done, that using
the implicit gradient method to update Θ will produce an
error of δ from the correct direction, resulting in a minor
negative but acceptable impact on the final result.

To answer question (2), we change the number of grad
steps in the the second-order gradient method and conduct
experiments to demonstrate the computation time com-
pared with the implicit gradient method. Figure 5 presents
the results, and it shows that the empirical computation time
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(a) MF-MAL on CDs (b) LightGCN-MAL on CDs

(c) MF-MAL on Books (d) LightGCN-MAL on Books

Fig. 5. The empirical computation time comparison. SOG denotes the
second-order gradient method (Section 4.3), and IG denotes the implicit
gradient method (Section 4.4).

of the original gradient descent method grows faster than
the implicit gradient method. The reason is that the second-
order gradient method requires the back-propagation pro-
cess to compute the Hessian matrix, which is much more
expensive. On the other hand, the implicit gradient method
applies an L2 norm trick and adopts a conjugate gradient
algorithm to approximate the optimization, which yields
more efficiency gain. Notably, even when the grad step is
1, the implicit gradient method also spends less time than
the one-step SGD.

6 CONCLUSION

In this paper, we propose a meta auxiliary learning frame-
work, MAL, for the Top-K recommendation. Specifically,
we construct two self-supervised learning tasks as auxil-
iary tasks to enhance the representation qualities of users
and items, respectively, for facilitating the training of the
primary recommendation task. The auxiliary and primary
tasks are further modeled as the meta-learning paradigm
to adaptively balance the contribution of auxiliary tasks for
improving the primary recommendation task. The implicit
gradient method is further adopted to improve the time
efficiency of the meta learning framework. Experimental
results on four real-world datasets clearly validate the per-
formance advantages of our model over multiple state-of-
the-art methods and demonstrate the effectiveness of each
of the proposed constituent modules.
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