O 0 N O U1

10
11

12

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

GoTreeScape: Navigate and Explore the
Tree Visualization Design Space

Guozheng Li

and Xiaoru Yuan

, Senior Member, IEEE

Abstract—Declarative grammar is becoming an increasingly important technique for understanding visualization design spaces.

The GoTreeScape system presented in the paper allows users to navigate and explore the vast design space implied by GoTree, a
declarative grammar for visualizing tree structures. To provide an overview of the design space, GoTreeScape, which is based on an
encoder-decoder architecture, projects the tree visualizations onto a 2D landscape. Significantly, this landscape takes the relationships
between different design features into account. GoTreeScape also includes an exploratory framework that allows top-down, bottom-up,
and hybrid modes of exploration to support the inherently undirected nature of exploratory searches. Two case studies demonstrate the
diversity with which GoTreeScape expands the universe of designed tree visualizations for users. The source code associated with
GoTreeScape is available at https://github.com/bitvis2021/gotreescape.

Index Terms—Tree visualization, design space exploration, deep learning

1 INTRODUCTION

ESEARCHERS have proposed many declarative grammars for

visualizations [1], [2], [3], [4], [5], [6]. These grammars build
design spaces by decomposing visualizations into multiple dif-
ferent dimensions, each presenting different properties of a lay-
out. Declarative grammars balance fine-grained design
controls with the burden of constructing tree visualizations by
specifying what to render. However, users may find it difficult
to navigate and explore the design space implied by a gram-
mar. Yet this is an important aspect of enlarging the set of
design possibilities that are known to visualization designers—
i.e., the known space—and also the solutions that the designers
can actively consider—i.e., the consideration space [7].

Within the realm of information visualization, visualiz-
ing tree structures is a basic and fundamental task, with the
literature offering hundreds of techniques for doing so [8].
Many software applications, programming libraries, and
other techniques allow users to author tree visualizations,
including general tools like D3 [9], Vega [2], and Tableau'

1. https:/ /www.tableau.com/

o Guozheng Li was with the School of Al, Peking University, Beijing 100871,
China. He is now with the School of Computer Science and Technology,
Beijing Institute of Technology, Beijing 100811, China.

E-mail: guozhg.li@gmail.com.

o Xiaoru Yuan is with the Laboratory of Machine Perception (Ministry of
Education), School of Al, Peking University and National Engineering
Laboratory for Big Data Analysis and Application, Peking University, Bei-
jing 100871, China. E-mail: xiaoru.yuan@pku.edu.cn.

Manuscript received 3 November 2021; revised 21 September 2022; accepted 7
October 2022. Date of publication 0 2022; date of current version 0 2022.
This work was supported in part by the National Key Research and Develop-
ment Program of China under Grant 2021YFB3301502, in part by NSFC under
Grant 61872013, and in part by the Beijing Institute of Technology Research
Fund Program for Young Scholars.

(Corresponding author: Xiaoru Yuan.)

Recommended for acceptance by S.G. Kobourov.

This article has supplementary downloadable material available at https://doi.
0rg/10.1109/TVCG.2022.3215070, provided by the authors.

Digital Object Identifier no. 10.1109/TVCG.2022.3215070

4

as well as approaches tailored specifically for trees like
GoTree/Tree Illustrator [4], [10] and the generative layout
approach [11].

However, much previous research on authoring tree vis-
ualizations assumes that users have a clear target visualiza-
tion in mind. Yet, in many cases, one’s design objectives
may only be loosely-specified, with the user finding them-
selves seeking a suitable solution from the design space. For
example, a designer may want to visualize astronomical
hierarchical data related to the solar system using a ring-
shaped tree visualization, for a visual style consistent with
the subject matter. Alternatively, perhaps the designer has a
limited knowledge of all design options and does not know
which tree visualizations might meet his/her requirements.
S/he may not know whether a better tree visualization
design exists nor how to choose the other design dimen-
sions needed to reach an appropriate final solution. Yet, in
general, supporting the exploratory design [12] of tree visu-
alizations in such application scenarios is still an under-
explored problem.

That said, there have been a few studies on exploratory
design as well as exploratory visual analysis (EVA). When
conducting an EVA, analysts have a vague hypothesis or an
ill-defined task in mind. Similarly, exploratory design begins
with loosely-specified design goals and proceeds in an
opportunistic and serendipitous manner. These studies on
exploratory design [13], [14], [15], [16], [17] and EVA [18],
[19], [20], [21] mainly offer ways to explore a parametric
space. Additionally, studies on EVA focus on changing the
underlying data variables, that is data variations, while
exploratory design generally involves tweaking the design
parameters, i.e., design variations. What these studies do not
address is how to support the exploratory design of tree vis-
ualizations. Overcoming this problem involves at least two
challenges:

The first challenge is providing an overview of the tree
visualization design space. This space is often extremely
large, encoding both topological and node attributes with

1077-2626 © 2022 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

32

54

56

69

https://orcid.org/0000-0001-6663-6712
https://orcid.org/0000-0001-6663-6712
https://orcid.org/0000-0001-6663-6712
https://orcid.org/0000-0001-6663-6712
https://orcid.org/0000-0001-6663-6712
https://orcid.org/0000-0002-7233-980X
https://orcid.org/0000-0002-7233-980X
https://orcid.org/0000-0002-7233-980X
https://orcid.org/0000-0002-7233-980X
https://orcid.org/0000-0002-7233-980X
https://github.com/bitvis2021/gotreescape
mailto:guozhg.li@gmail.com
mailto:xiaoru.yuan@pku.edu.cn
https://doi.org/10.1109/TVCG.2022.3215070
https://doi.org/10.1109/TVCG.2022.3215070

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

many visual channels. Ways of quantifying the similarity
between different tree visualizations in a way that matches
human perception are not necessarily obvious. For example,
one could generate two congruent tree visualizations by
swapping the layout-related design dimensions along the «
and y-axes. Although the “edit distance” between these two
visualizations’ grammars may be large (because many
design dimensions are different), the results would like be
perceived as being extremely similar. Moreover, design
dimensions will have different impacts on the visualization
results. For example, changing a Cartesian coordinate sys-
tem to a polar coordinate system influences both the relative
positions and the shapes of nodes in the tree visualization,
whereas changing the node type from circle to triangle only
influences the shape of the node.

The second challenge involves how to provide a flexible
approach to exploratory design, where users have the
option to start from a loosely-specified goal and make sub-
sequent decisions to identify a concrete solution. In some
cases, the user might begin with a tentative design as a start-
ing point and wish to confirm if better visualizations are
available in the design space. In other cases, the user might
begin with queries that partially restrict the set of possible
solutions, or may even begin with no preconceived design
and wish to freely explore. The decision-making process of
the user can also be highly variable. It may be directed
toward a clear goal; it may involve determining design
choices for certain dimensions; or it may involve backtrack-
ing and starting over due to some new inspiration.

To address these challenges, we propose GoTreeScape, a
system providing an overview of a landScape of tree visual-
izations described by GoTree [4]. GoTreeScape allows users
to control their exploratory design process while supporting
wide variations in requirements. To project the set of possi-
ble tree visualizations onto a two-dimensional space,
GoTreeScape uses a variational autoencoder (VAE) to map
62340 tree visualizations (as described by GoTree) onto a
latent space, in which nearby points decode to similar tree
visualizations. This training integrates domain expertise
about what makes two tree visualizations look similar and
also which GoTree design dimensions have a more signifi-
cant impact on the tree visualization results than others
(Section 4.2.2). To avoid excessive clutter, GoTreeScape dis-
plays landmarks in the design space, which are representa-
tive tree visualizations, and shows a density-based contour
indicating other possible design choices rather than all dis-
crete points. To enable flexible exploratory design, GoTree-
Scape incorporates an exploratory framework supporting
top-down, bottom-up, and hybrid exploration modes. In
addition, it allows for a data-oriented exploration of the
design space where users upload their hierarchical data and
can then generate all tree visualization results based on
those data. Driven by the considerations distilled from exist-
ing studies on exploratory design and EVA [18], [19], [20],
GoTreeScape visualizes the tree visualization design space
through a landscape metaphor and supports navigation
and exploration by users.

To evaluate the usability of GoTreeScape, we had one
visualization designer and one visualization researcher
apply the system to their own scenario of tree visualization
design. These two case studies demonstrate the system’s

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

utility. The results not only show that GoTreeScape allows
users to find desirable solutions but also that GoTreeScape
expands the diversity of user-designed tree visualizations.

Our contributions include: (1) A novel approach to con-
structing a tree visualization design space as a holistic land-
scape; (2) An exploratory framework supporting varying
user requirements and scenarios; and (3) A prototype sys-
tem for navigating and exploring tree visualization design
spaces.

2 RELATED WORK

This section reviews the literature on tree visualizations,
and, particularly, tree visualization frameworks, as well as
the literature on exploring design spaces.

2.1 Tree Visualization

Tree visualizations can be categorized into implicit and
explicit techniques depending on how the parent-child rela-
tions in hierarchical data are visually represented. Explicit
techniques emphasize topological structures by explicitly
encoding parent-child relationships into the tree’s visual
elements, e.g., arcs [22], straight lines [23], and curves [24].
By contrast, implicit techniques are potentially more space-
efficient because they encode the parent-child relations into
relative positions between the nodes, e.g., containment [25]
and adjacency [26]. Additionally, hybrid techniques that
combine the advantages of two or more approaches have
also been proposed [27]. Beyond novel tree visualizations,
researchers have also proposed various ways of capturing
and describing the vast design spaces in a unified way
through graphical building blocks. Schulz et al. [8], for exam-
ple, are collecting tree visualizations on treevis.net, with
over 330 assembled to date. Exceeding the boundaries of a
collection, treevis.net also classifies tree visualizations
against three design criteria, namely dimensionality (2D,
3D, and hybrid), edge representation (explicit, implicit, and
hybrid), and node alignment (radial, axis-parallel, or free).
Li et al. [28] subsequently extended these three design crite-
ria into 12 design features, and also constructed a phyloge-
netic tree to show evolutionary relationships. Similar to
GoTreeScape, this study also supports exploring tree visual-
ization designs. However, the phylogenetic tree comprises
just 35 tree visualizations, while GoTreeScape allows users
to explore and navigate a vast design space implied by a
fine-grained declarative grammar.

Although useful for classifying design choices, the above
design dimensions are not fine-grained enough to generate
concrete tree visualizations. To overcome this problem, some
researchers have looked to categorize all possible tree visual-
izations into subclasses. Others have proposed descriptive
approaches to support the fine-grained specifications. For
example, Schulz and Hadlak [29] proposed an approach to
exploration based on presets that allows users to construct
new designs by blending several existing visual representa-
tions. They feature five design dimensions: explicit/implicit,
structure/attribute, aligned/cascaded, inclusion/adjacency,
axis-parallel/radial and exemplify preset-based method on
tree visualizations. As shown in Fig. 1, blending a radial node-
link layout with a nested squarified treemap produces a nested
squarified pietree. In terms of implicit tree visualizations,

131
132
133
134
135
136
137
138
139

140

141
142
143

145

149

154

159

169

187

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

221
222
223
224
225
226
227
228
229
230

232
233
234
235
236

LI AND YUAN: GOTREESCAPE: NAVIGATE AND EXPLORE THE TREE VISUALIZATION DESIGN SPACE 3

Stages

(b) Nested Squarified Treemap

(c) Nested Squarified Pietree
— .

Traversal

Prelayout

|

|

|

|

|

|
Preprocess |
|

|

|
Allocate [
|

|

fiiiil

'

Fig. 1. Three typical tree visualizations and their step-wise creation process. A radial node-link layout (a) is an explicit tree visualization. A nested
squarified treemap (b) and a nested squarified pietree (c) are both implicit tree visualizations. Users can construct (c) by setting (a) and (b) as presets

during the exploration phase of the visualization design process.

Schulz et al. [30] divide the design space along four dimen-
sions: dimensionality, node representation, edge representa-
tion, and layout. With layout containing more fine-grained
parameters, such as subdivision and packing. Li et al. devel-
oped GoTree [4], a declarative grammar for tree visualiza-
tions, and Tree Illustrator [10], which is an interactive
authoring tool for further reducing the burden of construct-
ing visualizations imposed by GoTree. Spurred on by the
capabilities of GoTree, we leveraged this application to con-
struct the tree visualization design space for GoTreeScape.

Beyond graphical building blocks, such as visual elements
and properties, some tree visualization frameworks use furnc-
tional building blocks, i.e., operators. The generative layout
approach [11] involves a construction pipeline with six
stages for constructing implicit and explicit tree visualiza-
tions. The six stages include initialization, traversal, pre-pro-
cess, pre-layout, allocate, and post-layout. Further, a set of
operators is defined for each stage. Fig. 1 shows the step-
wise creation process of three tree visualizations based on
these operators. Many operator-based tree visualization
frameworks also focus on the subcategory of the tree visual-
izations, especially for space-filling tree visualization lay-
outs. For instance, Baudel and Broeksema [31] use five
dimensions, namely, order, size, chunk, recurse, and phrase,
to drive space-filling layouts. Existing studies [32], [33] also
use operators to configure a hierarchical layout to visualize
multivariate data.

Hence, overall, the current literature organizes the tree
visualization design space and supports the rapid prototyp-
ing of tree visualizations, but it does not allow users to effec-
tively perform open-ended explorations of the design space
when the user’s targets are not well-defined.

2.2 Design Space Exploration

The design space extracts preliminary building blocks from
existing visualizations and builds a space for visualizing pos-
sible designs, both existing and novel, by assembling all possi-
ble combinations of the building blocks. Visualization design
spaces can help guide users in the design process by support-
ing them to understand single visualizations and their rela-
tionships. [34], [35], [36]. For example, by examining existing
implicit tree visualizations, Schulz, Hadlak, and Schu-
mann [30] identified four independent building blocks:
dimensionality, node representation, edge representation,
and layout. These serve as axes for constructing the design
space. Card et al. [34] structure the visualization design space
by treating the data properties as an important aspect of
representation. By contrast, Tory and Moller [37] provide a
high-level taxonomy for a discrete or continuous visualization

design, based on different display attributes. Design spaces
for visualizing tree subcategories have also been structured,
including composed visualizations [35], [38], timeline-based
storytelling visualizations [39], biological data visualiza-
tions [40], and the tree visualizations explained in Section 2.1.

Volume rendering results are determined by various
design dimensions, such as transfer functions and view-
points. To search for the volume rendering results that meet
one’s analysis requirements, users need to explore a design
space. Some provide an overview by calculating the differ-
ences between the visualization results and arranging them
based on MDS projections [14], [41]. More specifically,
Design Galleries [14] defines a distance metric within a
parameter-based high-dimensional space, to ensure that the
options displayed in the gallery differ from each other. In
the transfer function map approach [41], a 2D representa-
tion of the transfer function feature space is built and the
interpolations between the individual volume rendering
results are explored. To organize the visual process of
exploration for discovery, comparison, and analysis, Jan-
kun-Kelly and Ma [13] propose solutions based on
graphs [42] and a spreadsheet interface [13] so as to orga-
nize the volume rendering results. Additionally, tools like a
palette-style volume visualization interface [43] and the
intuitive WYSIWYG interactions [44] have been proposed
to make the exploration process more user-friendly. What
all these methods have in common is that they are designed
to find a suitable parameter set for a given volume dataset.
By contrast, Bolte and Bruckner [45] propose Vis-a-Vis to
analyze the effect of one parameter set on different datasets
with respect to both the graphical output and the source
code. However, like volume rendering, generating volumet-
ric geometry also involves a large set of parameters. Hence,
Cupid [17] combines the abstract parameter space with the
resulting geometric shapes in composite visualizations to
help users understand the parameter sensitivities and iden-
tify invalid parameter settings.

Another scenario of design space exploration considers
chart construction for multivariate and tabular data. The
vast combinations of data variables, data transformations,
and visual encodings can result in a large design space.
Hence, existing studies focus on recommending possible
visualizations, deriving insights from prior investigations,
and guiding further explorations. To recommend visualiza-
tions, Voyager [19] allows users to choose the recommended
charts according to statistical and perceptual measures in a
mixed-initiative manner. Voyager2 [18] extends Voyager
with wildcards and related views to allow open-ended
exploration and targeted question answering. All these

237
238
239
240
241
242
243
244
245
246

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

335

336

338
339

340
341
342
343

methods require users to actively participate to find appro-
priate visualizations, but visualization recommendations
are another way of further improving efficiency. One typical
example is Draco [46], which uses an optimization tech-
nique to find the best visual mapping approaches. Visual-
izations are specified based on answer set programming
and modeling the knowledge from visualization designs as
a collection of constraints.

Moreover, narrative visualizations require users to
choose an order in which to present multiple visualizations
instead of presenting the visualizations as independent
individuals. In this vein, Hullman et al. [47] proposed a con-
ceptual framework for identifying possible transitions in a
visualization set. Here, the cost of transitions is optimized
from the audience’s perspective. Kim et al. proposed Graph-
Scape [48], which builds a directed graph model of the visu-
alization design space. GoTreeScape supports automated
reasoning about the similarity and ordering of visualiza-
tions. Understanding the prior explorations is equally
important for deriving insights and guiding further explora-
tion. Chart Constellation [21] summarizes user-generated
charts in a 2D space based on the similarities of four ele-
ments: chart encoding, keyword tagging, dimensional inter-
section, and aggregated pairwise. ChartSeer [20] includes a
grammar-based encoder-decoder technique that provides a
visual summary. However, it emphasizes informing users
of the current EVA [49] state based on the charts created. It
also decodes charts from the projection results for further
exploration based on user interactions. In contrast to Chart-
Seer, GoTreeScape defines a weighted objective function
based on the characteristics of the design features. In addi-
tion, it constructs an overview of the tree visualization
design space implied by a fine-grained declarative gram-
mar, and includes an exploratory framework to support
user’s design process.

It is worth noting that all of the above research studies
that consider statistical charts are based on Vega-Lite [1], a
grammar of graphics capable of expressing a variety of sta-
tistical charts. Significant differences exist between GoTree
and Vega-Lite in terms of the expressiveness of tree visual-
izations. For example, at the time of this writing, Vega-Lite
does support the authoring of tree visualizations. GoTree,
however, is a declarative grammar designed specifically for
visualizing tree structures that supports a wide range of
tree visualizations.

Compared to existing works, GoTreeScape’s point of dif-
ference is that it focuses on the design space of tree visual-
izations, helping users with the exploratory phase of their
visualization design.

3 OVERVIEW OF GOTREESCAPE

This section discusses the motivating design considerations
of GoTreeScape, and then introduces an overview of our
methods at a high abstraction level. The technical details are
provided in Section 4.

3.1 Design Consideration

In the realm of tree visualization, the purpose of a declara-
tive grammar is to define a design space in a fine-grained
manner. Within this design space, tree visualizations can be

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

regarded as combinations of arbitrary attributes from all
design features. For example, GoTree [4] considers 49
design features. However, given combinatorial explosion,
such a design space will contain an enormous number of
visualizations, and browsing them all would imposes a sig-
nificant cognitive burden on users. Thus, to help designers
explore all possible options, we developed a set of consider-
ations informed by the existing principles of exploratory
data analysis [49], [50], visualization recommendation [20],
and mixed-initiative systems [18], [19]. Moreover, given
that not all principles from the above studies apply to tree
visualization and not all principles cover the full gamut of
what is needed in a tree visualization exploration schema,
we also worked closely with visualization designers to
refine these design considerations. The final set is summa-
rized as follows:

D1: Show Design Variation Rather Than Data Variation.
Design variation refers to the different forms of visually
encoding of data, while data variation focuses on the differ-
ent variables and transformations. In general, exploratory
data analysis [18], [19] emphasizes data variation over
design variation, while design space exploration pays more
attention to design variation. Empirically, visualization
designers always determine overall visual representations
at first. For example, they decide whether the visual repre-
sentations are consistent with the topic of their designs. The
next step is then the visual encoding of the dataset. Many
design features in a visualization grammar, e.g., node width/
height, have several variations relating to the dataset. The
proposed GoTreeScape collapses this space of options to a
single tree visualization with default values.

D2: Prefer Fine-Tuning to Exhaustive Enumeration. Despite
eliminating the data variation, enumerating the design fea-
tures still produces a combinatorial explosion. However,
not all design attributes have a significant impact on the
visualization results; some only have a minor impact on the
tree visualization results, such as padding between the ele-
ments. Other features are numerical, such as the central angle
of a polar coordinate system, while others still are categori-
cal with symmetrical options, e.g., the alignment between a
parent and child can be either left or right. Further, some
attribute combinations might be invalid with hierarchical
data. Thus, to reduce combinatorial explosion, GoTreeScape
rationalizes some features and their combinations and,
instead of exhaustively enumerating every option, offers
users options to fine-tune their selected visualization.

D3: Provide an Ouverview of the Tree Visualization Design
Space. During exploratory design, users must be kept aware
of what has been comprehensively explored and unex-
plored, and they must continuously determine subsequent
exploration directions. An overview of the tree visualization
design space provides a visual summary of this and present
relationships among tree visualizations. Here, nearby points
can be decoded into similar discrete tree visualizations in
harmony with human cognition. In this way, such a visual
summary benefits the exploratory design process. GoTree-
Scape considers the relationships between the design fea-
tures and builds a landscape by employing a VAE technique
based on GoTree’s grammars in JSON format.

D4: Encourage Interactive Controls to Drive Exploration.
Both exploratory design [12] and exploratory data analysis

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

LI AND YUAN: GOTREESCAPE: NAVIGATE AND EXPLORE THE TREE VISUALIZATION DESIGN SPACE 5

Golree grammar Context-free grammar finding nearest trees —=\ users’ decision ~ © landmark with preview @ landmark ¢""; zooming range
CFG -
- : nt + oor S
= : > Node + RootWidth + Color ° @? . % N . °
= . N -
|~ B ey s Lot % A2) @t |50
y . A +0O — .
T 11 [en —>Category + CentralAngle () Q
/‘-\/ fT\\/w\ = ° determine a range for zooming
o = 5 - .sunbwst P [] 9 o~
N . - 3
Golree design features) ~ St o @ N) N\
A v MDS D-[T) (B)hvbrid o)
H Il —» . —P| .-
. = ° @Treeman . @é”'x\ O °
N o
- ok o . ©® o’ o ‘
. o ® o o
; archree® node-link select a pre-determined TreeVis select nearest candidates
traverse all TreeVis Landscape . Q . - .
¢ combinations| (=N ; o o 77N\ [N
‘ i N : (@) @, | 9
_ - n) _
Lovout - X s AN N select landmarks oros® O o)
- : 2N N R — & [
- e iy o .

selected design features TreeVis collection TreeVis design features

1. Tree Visualization Set Generation

2. Landscape Construction

locate the pre-determined TreeVis select nearest candidates

3. Data-oriented Exploratory Framework

Fig. 2. The pipeline of GoTreeScape comprises three modules; (1) tree visualization set generation, (2) landscape construction, and (3) design space
navigation and exploration, which is driven by a framework with top-down, bottom-up and hybrid modes.

are open-ended iterative processes. In the beginning, the
user’s design goals or analysis tasks may be vague or only
loosely specified but, gradually and with exploration, they
should become more and more concrete; they might even
change completely. During their explorations, users will
make decisions, such as determining which direction to
pursue further, by assessing their current situation by using
their own domain knowledge. To encourage such a
dynamic exploration process, the system should always
provide users with the interactive controls to indicate their
intent and to drive their exploration. To this end, GoTree-
Scape provides users with density-based contours and land-
marks as guides and offers an exploration framework
consisting of top-down, bottom-up, and hybrid modes to
flexibly adapt to a large range of user requirements.

3.2 System Overview

Guided by the above considerations, we introduce GoTree-
Scape. GoTreeScape comprises three parts: generating the
collection of the tree visualizations; constructing the the
design space landscape; and the framework for exploring.
Fig. 2 illustrates the overall architecture of the proposed
GoTreeScape.

Generating a collection of tree visualizations is the basis
of navigating and exploring a design space. The visualiza-
tion set generation is based on GoTree, which is a declara-
tive grammar of tree visualizations. Compared to GoTree,
Vega-Lite supports a wide range of statistical charts but, at
the time of writing, cannot be used to author tree visualiza-
tions. Traversing all the combinations of the design features
defined in GoTree would result in an enormous number of
possible tree visualizations in the design space. Therefore,
GoTreeScape simplifies the design features in three aspects
rather than generating all possibilities. (1) Only combina-
tions of the design features related to design variations are
traversed (D1); (2) Design features that have a small impact
on the final tree visualization results are removed and (3)
Invalid combinations of the design features are removed
based on domain expertise (D2).

Constructing a design space landscape provides users with
an overview of the generated tree visualization collection.
However, the similarities between the tree visualizations can

often be difficult to quantify due to the various design fea-
tures of the tree visualizations. GoTree decomposes tree
visualizations into design features, and so GoTreeScape is
based on an encoder-decoder architecture that computes
a vector representation for each tree visualization. The
decoder computes representations from GoTree in 2D
space with a customized objective that considers the char-
acteristics of the tree’s layout (D3).

The exploratory framework allows users to explore and
navigate based on the constructed landscape of the tree
visualization design space (D4). It consists of top-down, bot-
tom-up, and hybrid modes to account for the varying start-
ing points of each user along with their design decisions
during exploration. In top-down mode, users do not have
any requirements for their target design, or perhaps they
only have partial specifications. Partial specifications allow
users to isolate a portion of the landscape from the begin-
ning. As they explore, the correct design features are gradu-
ally determined with the help of landmarks. In bottom-up
exploratory mode, users have a preliminary tree visualiza-
tion design but want to explore some other alternatives in
the design space. GoTreeScape will therefore recommend
visualizations similar to their starting design and also at dif-
ferent levels of zoom. Finally, in hybrid mode, users can
flexibly switch between top-down and bottom-up modes.
For example, users can decide on a tree visualization during
a top-down explorations and then use it as a starting point
for a bottom-up exploration.

Based on this exploratory framework, we designed a pro-
totype system to guide users during their exploratory pro-
cess. The prototype includes density-based contours to
inform users of what could be further explored, and also
representative landmarks to inform users of the various
design features of the tree visualizations. The system also
provides a range of interaction options for users to indicate
their intentions.

4 GOTREESCAPE SYSTEM

This section presents the technical details of each part of the
GoTreeScape architecture. Consistent with the system over-
view explained in Section 3.2, the following subsections
introduce how the visualization set is generated, how the

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481

482

483
484
485
486

487
488
489
490
491
492

493
494
495
496
497
498
499
500

502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

landscape is constructed, and the data-oriented exploratory
framework. Note that the landscape is constructed indepen-
dently of the hierarchical data, but the exploratory design
framework takes the characteristics of the hierarchical data
into consideration. In the last part of this section, we also
discuss the design of the prototype.

4.1 Tree Visualization Set Generation

GoTreeScape uses GoTree to represent and manipulate tree
visualizations. GoTree divides its 49 design features into
three categories: visual elements, the coordinate system, and
the layout. Each category consists of multiple fine-grained
design features with categorical and numerical attribute val-
ues. For example, the attribute values for NodeShape and
LinkShape in the visual element category are categorical,
while the value of the CentralAngle in the polar coordinate
system (within the coordinate system category) is numerical.
Details of each design feature can be found in the supple-
mental material, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2022.3215070. Traversing all design feature
attributes will result in a massive collection of tree visualiza-
tions. So, in GoTreeScape, the visualization set that is gener-
ated is simplified against three criteria.

Design Features. GoTreeScape emphasizes design varia-
tions rather than data variations (D1). As a result, GoTree-
Scape does not traverse any design features that do not lead
to new designs when generating the collection of tree visu-
alizations. The eliminated design features fall into three
main categories. The features in the first category, e.g., Node-
Width, are only related to the attributes of hierarchical data
items. The second category contains features that only have
a minor impact on the design, e.g., Margin and Padding
between visual elements. The third category is independent
of the visual representations, e.g., the position of NodeLabel.

Design Feature Attributes. In addition to the design fea-
tures, the number of feature attributes is also a significant
factor that determines the size of the tree visualization col-
lection. Hence, GoTreeScape also makes the following two
simplifications: (1) Any feature attributes that result in sym-
metrical tree visualizations are simplified. For example, set-
ting the alignment of the parent-child relationship to “left”
or “right” results in symmetrical tree visualizations. There-
fore, GoTreeScape only takes one option from the symmet-
ric feature values in the collection and leaves the other to a
fine-tuning process. (2) Only representative discrete values
are taken for the numerical feature attributes. For example,
in GoTree, the CentralAngle of the polar coordinate system
falls between 0 and 1. Zero indicates that the central angle
of the polar coordinate system is 0°, and one indicates that
the central angle is 360°. We set the central angles to 0.25
(90°), 0.5 (180°), 0.75 (270°), and 1 (360°) when generating
the tree visualization collection.

Combinations of Design Feature Attributes. Some design
feature combinations lead to invalid visual representations
with hierarchical data due to severe overlaps with the visual
elements or conflicts between the design features. Two typi-
cal examples follow: (1) When the relative positions
between siblings along the z-axis and y-axis are both aligned,
the nodes in the visualization overlap significantly making
it difficult to differentiate them. (2) Some visual elements,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

such as, ellipses and triangles can conflict with the features
of the layout and coordinate system. That is, the position
and occupied space of the visual elements are calculated
based on the layout and coordinate system, but these nodes
cannot be appropriately visualized in the occupied space.

The design space can be represented using a hierarchical
structure. The above three simplifications over the whole
design space are shown in Fig. 7a, and the remaining design
features and attributes are shown in Fig. 7b. After simplifi-
cation, 62,340 tree visualizations remain in the collection.
Details of the simplified configurations are given in the sup-
plemental materials, available online.

4.2 Landscape Construction

To provide an overview of design space that shows a visual
summary of the relationships between tree visualizations,
an unsupervised encoder-decoder framework converts the
tree visualizations to and from embedding vectors in the
latent space. Specifically, the encoder maps the input sam-
ples to vectors in a low dimensional latent space, and then
the decoder restores the vectors to the original space. Essen-
tially, these embeddings constitute a representation of the
target tree visualization design space.

The similarities between the tree visualizations can easily
be measured based on the euclidean distance between the
vectors of these representations. Furthermore, the relation-
ships, clusters, and distribution of the tree visualization
design space can be also derived from this latent space. To
improve the readability of the landscape, the latent space is
eventually reduced to a two-dimensional euclidean space,
and landmarks are added to the landscape to guide the
user’s exploration.

Our insights into the landscape design, which serve as
the domain knowledge for the model design, are discussed
next. We then discuss the VAE, highlighting its advantages
over other dimensionality reduction techniques. Finally, we
present more details on how the GoTree-based landscape is
constructed.

4.2.1 Landscape Design Justification

One of the jobs of the overview is to help users learn the rel-
ative relationships between visualizations. One straightfor-
ward approach to accomplishing this goal is to directly
display all tree visualization items and to use the distances
between the items to encode their similarities. However, the
underlying visualization set for constructing such an over-
view is too large for such a direct solution. Showing all visu-
alizations in the collection would severely overwhelm users.
Note that visualization design space exploration is different
from recommendation, which is able to get a priority of dif-
ferent visualizations. For example, Draco [46] sorts the visu-
alizations according to some criteria and shows them in a
simple list. However, showing all tree visualizations with-
out priority in a simple list is likely not optimal because
users would need to check each tree visualization, making
the exploration process tedious and time-consuming. To
solve these challenges, we have turned to the visual and
interactive properties of a landscape as a metaphor. More
specifically, image looking at a map from a zoomed-out
point of view where only representative landmarks, such as

547
548
549
550
551
552
553
554
555
556
557
558

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

584

585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

http://doi.ieeecomputersociety.org/10.1109/TVCG.2022.3215070
http://doi.ieeecomputersociety.org/10.1109/TVCG.2022.3215070

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

623

624
625
626
627
628
629
630

632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

LI AND YUAN: GOTREESCAPE: NAVIGATE AND EXPLORE THE TREE VISUALIZATION DESIGN SPACE 7

N

¥ ©)

|
< =Ham | l
@ AliEEE-]]| »II I I e

f. treevis2 a. cicle plot

8. sunburst

a A vy L ain

B |
oy | |
[]

b. IPTP c. BarcodeTree d. treevis1 e. icicle plot
[] = I
" = = -‘l =
_‘ |
B -
| = | h_. I B

Fig. 3. The six tree visualizations. (b)-(g) in the first row are based on (a) an icicle plot by changing the layout-related design features (arrows in
orange), the visual element-related design features (arrows in blue), and the coordinate system-related design features (arrows in brown). (1)
Changing parent-child relation along the x axis to juxtapose. (2) Changing the parent-child relation along the y axis to align. (3) Changing the sibling
relation along the y axis to flatten. (4) Changing the sibling relation along the x axis to align. (5) Changing the visual elements to triangle. (6) Changing
coordinate system to polar. The visualizations in the second line are based on the results in the first row accordingly.

countries and their capitals, are visible. Then zoom in, and
the inner states of a country begin to appear. In addition,
when the user selects a specific target of interest, more tar-
gets belonging to the same category will be appear on the
landscape. We propose an exploration tool that allows users
to navigate the collection of tree visualizations in a similar
way. A landscape was chosen as a visual metaphor for two
reasons. First, the landscape metaphor was one of the first
methods used by the information visualization community
to visualize rich information that is not inherently spa-
tial [51]. Second, existing studies have found that everyone
intuitively understands landscapes [51] and generally learns
to read maps in pre-school [52]. In addition, solving map-
based analysis tasks requires little training. The remainder
of this section introduces the specific techniques for build-
ing GoTreeScape. These techniques are invisible to ordinary
users; all users need to do is to interact with the landscape
overview.

4.2.2 Insight on Design Feature

This section explains our insights into the design features,
which guided us in determining the weights of each feature
when training the autoencoder. The model is used to map
the tree visualizations to latent vectors. The design features
in GoTree determine tree visualization results. However, by
investigating the generated tree visualization collection, as
explained in Section 4.1, we found that computing similari-
ties between the tree visualizations based on euclidean dis-
tance was not consistent with human perception for the
following two reasons:

First, different design features have a different magni-
tude of impact on the tree visualization results. In fact, we
classified design features into four different categories
according to the impact they have on the results. The design
features associated with the coordinate system have the
most significant impact. As shown in Fig. 3(6), changing the
coordinate system attribute value from Cartesian to the polar
influences the layouts (relative positions) of the tree visual-
izations. Since position is the most efficient visual channel
for encoding data, layout-related design features have the
second-most significant impact. As shown in Fig. 3(1)-(4),
layout-related design features influence the tree visualiza-
tion layout, including relative position and height/width of
the visual elements. The third category consists of visual

element-related design features (Fig. 3(5)). Features in this
category only change the visual elements. In the fourth cate-
gory, the design features only slightly adjust the layout.
These features include attributes such as margins and pad-
dings between the nodes.

Second, the similarities between tree visualizations do
not necessarily correlate to the number of design features
that have changed. GoTree is a declarative grammar defined
along axes, which is a common way to design visualization
grammars, such as ATOM [3] and Vega-lite [2]. However,
with an axis-decomposed declarative grammar, the layout-
related design features of two center-symmetric tree visual-
izations may be completely different. Fig. 3 shows an exam-
ple. Starting from the icicle plot tree visualization in (a), the
parent-child relation along the x axis is include and the sib-
ling relation is flatten; along the y axis, the parent-child rela-
tion is juxtapose and the sibling relation is align). However,
after swapping the design features along the x and y axis
(Steps 1-4), the tree visualization changes to that shown in
(e). Both (a) and (e) are icicle plot tree visualizations only
with different orientations. However, the edit distance in
terms of the design features of the two grammars is great.

Based on the above insights, we restructured the design
space as shown in Fig. 7c, reordering the design features
according to the level of impact they have on the tree visual-
izations. Further, the layout-related design features are
grouped along the same axis. The weights of these design
features decrease from top to bottom and are encoded in a
vector W that is used to train an autoencoder, as described
in Section 4.2.4.

4.2.3 VAE-Based Dimensionality Reduction

Landscape construction can be modeled as a dimensionality
reduction task, which maps the tree visualization design
space from a discrete space into a low-dimensional euclidean
space. This section introduces the basis of the VAE,
highlighting its advantages over other dimensionality reduc-
tion techniques. Unlike other traditional dimensionality
reduction techniques, e.g., MDS [53], PCA [54], UMAP [55]
and t-SNE [56], VAEs [57] are a type of generative model
with a strong ability to represent data. VAEs assume that the
input data has some sort of underlying probability distribu-
tion, such as a Gaussian distribution, and it projects data into
the latent space in a generative modeling way.

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677

678

679
680
681
682
683
684
685
686
687
688
689
690

691
692
693

695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712

714
715
716

718
719
720
721
722

723

724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749

Based on an encoder-decoder framework, the VAE uses
variational inference to derive an evidence lower bound
(ELBO) as the objective [57] given by:

logp(z;) > E — Dir(qo(2|2:)||p(2))

) [log py(wi2)]

~qp(2|z;

1)

Note that the right-hand side of Eq. (1) is the core of the
VAE, where gy(z|z;) is the encoder that maps z; into the
latent variable z, and py(z;|2) is the decoder that reconstruct
z from the input z;. The first term in the ELBO represents
the reconstruction log-likelihood, while the Kullback-Lei-
bler (KL) term ensures the learned distribution. gy(z|x;) is
similar to the true prior distribution p(z). Notably, the KL
term reveals a fundamentally unique property that sepa-
rates it from an ordinary autoencoder, that is, that the VAE
not only reconstructs the inputs, it also learns a more coher-
ent latent space in which nearby points decode to similar
discrete outputs.

A Gaussian representation was chosen for the latent
prior p(z) and the approximate posterior gy(z|z;) empiri-
cally. Finally, the VAE loss function is derived by consider-
ing the negative of the ELBO:

L = Drr(go(2|7i)[IN(0,1)) = Evgyepo) log py (il 2)])

where the optimal parameters (6%, ¢*) are derived by mini-
mizing L:

(0%, ¢") = argming 4 L(6, @) (3)
Thus, the GoTree-based landscape is constructed by cus-

tomizing the neural network structure and the objective
based on this VAE methodology.

4.2.4 GoTree-based Landscape Construction

The landscape construction approach is based on the declar-
ative grammar of the tree visualizations. Generally, visuali-
zation images in bitmap format are the final results that
users directly perceive. Therefore, the smaller the pixel-
based distance between two bitmap images, the more simi-
lar the corresponding tree visualization results should be.
However, after testing the landscape construction method
based on tree visualization images, we found that the
GoTree grammar captures inherent visualization features
like radial versus angular or include versus juxtapose, and
these would have to be tediously extracted from the result-
ing bitmaps using computer vision technique. Therefore,
the landscape construction based on these grammatic
expressions aligns by design with these features, breaking
down the landscape into coherent and sensible regions
implied by them — e.g., a region of radial visualizations ver-
sus a region of angular visualizations. Detailed results and
explanations can be found in the supplemental material,
available online.

Compared to the bitmap images, GoTree, which decom-
poses tree visualizations into design features, is a better
input format and means that domain knowledge can be
injected into landscape construction results. To input the
grammar into the model, we used context-free grammar
(CFG) inspired by the grammar-based variational autoen-
coder (GVAE) [58]. This linearizes the GoTree’s grammar

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

Treevrs context-free grammar {CFG) . @

® @ ®)

.Elements —> Link + Node »D D D D D D . D D Nirax
®subtree — Margin + Retation's[] (11][] (][][]
(R;,/Nothlng > None paddmgrule{D D D D D D D D .
J
Noai

Fig. 4. The input to the encoder-decoder network transforms the rules
into one-hot feature vectors. N,; indicates the number of rules extracted
from the CFG of all tree visualizations. N,,,, indicates the maximum
number of rules extracted from each CFG tree visualization.

by mapping it into a set of rules, as shown in the dotted box
in Fig. 2. The input/output of the encoder-decoder network
is a set of one-hot feature vectors representing the rules
extracted from CFG rules of the tree visualizations. Since
the different tree visualizations do not have an identical
number of rules, we carefully designed the feature vector to
ensure that different tree visualizations share the same
structure. As shown in Fig. 4, the length of its first dimen-
sion is the maximum number of rules extracted from indi-
vidual tree visualizations’ CFG, defined as m (35 in
GoTreeScape). The second dimension indicates a padding
rule (Nothing—None) and the deduplicated rules extracted
from all tree visualizations” CFG, and its length is defined
as n (60 in GoTreeScape). The GVAE model’s structure is
then refined based on the above tree visualization features,
and a weighted reconstruction loss is introduced.

ZWT

(4)

(po(as(z:) —)|

where z; € R"™™ is the ith parsed tree in the generated
training visualization set. Each rule is represented asan x 1
one-hot embedding and py is an RNN decoder based on a
GRU. Considering the repetitive and translationally invari-
ant property of the input CFG strings, g is designed as a
1D-CNN encoder, while W is an n x 1 normalized weight
vector, and W; denotes the heuristic weight of the ith design
feature given the design feature insights discussed in Sec-
tion 4.2.2. The weights for generating the design space over-
view in Fig. 5 are 10000 for the coordinate system-related
design features, 100 for the layout-related design features,
and 1 for the visual element-related design features. With
the help of the prior weight vector, the domain expertise
concerning the importance of the design features can be pre-
served into the embeddings of the latent space. To enable
users to explore and navigate the design space, the embed-
ding results must be visualized in two-dimensional space.
There are several ways this can be done. The first option is
to learn a 20-dimensional latent space with the GVAE model
and then project the embeddings in two-dimensional space
using dimension reduction techniques. The other alterna-
tive is to learn a two-dimensional latent space directly, but
this would have a lower accuracy, as shown in Table 1.

Fig. 5 shows the overview of tree visualization design
space based on different methods. The first three columns
are the projection results of the 20-dimensional latent vec-
tors using the MDS [53], UMAP [55], and t-SNE [56] dimen-
sion reduction techniques. In terms of the parameters of the

750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795

796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821

823
824
825

LI AND YUAN: GOTREESCAPE: NAVIGATE AND EXPLORE THE TREE VISUALIZATION DESIGN SPACE 9

latent vector (20) / MDS

latent vector (20) / UMAP

cartesian :
overview

TreeVis collection

TreeVis collection

latent vector (20} / t-SNE latent vector (2)

\
@\

1
N %
N\

N

N \\\

]

P

N
= .
N

s
-

Fig. 5. Comparison of the projection results. Vertically, each of the four columns refer to the projection results derived from different techniques. The
first three columns reflect 20-dimensional latent vectors, as computed by a grammar-based auto-encoder and projected them to 2D space using
MDS, UMAP and t-SNE, respectively. The fourth column reflects 2-dimensional latent vectors. Horizontally, the projection results in the first row show
the overview of tree visualization design space implied by GoTree. The second row highlights tree visualizations in the Cartesian coordinate system
in red, and the third row highlights tree visualizations with rectangular visual element in orange.

UMAP technique, we set the n_neighbors (the number of
neighbors) to 50 and the min_dist to 0.5. For t-SNE’s parame-
ters, we set the perplexity to 50. The fourth column shows the
visualization results of the two-dimensional embeddings.

The second row and third row in Fig. 5 illustrate the tree
visualizations with the Cartesian coordinate system and rect-
angular visual elements, respectively. The results show that
the projection results with MDS and UMAP using a 20-
dimensional latent space and a two-dimensional latent space
(the first, second, and fourth columns) can better preserve
the local feature characteristics. For example, most tree visu-
alizations in the Cartesian coordinate system or with rectan-
gular visual elements are adjacent in the landscape.
However, the projection results for t-SNE (the third column)
are not, because t-SNE performs much worse at preserving
the global structure [59]. To evaluate the quality of the
dimensionality reduction, we use a Jaccard index [60], which
measures the dissimilarity between sample sets. First, we
performed hierarchical clustering for tree visualizations in
the landscape, with each cluster in the hierarchical clustering
results (/) being denoted as ¢;. Second, we extracted multi-
ple tree visualization lists (denoted as I;) by filtering some
chosen design features (e.g., the Cartesian coordinate system
and the rectangular visual elements). Then, the maximum
Jaccard index for all clusters in the hierarchical clustering
results is computed for each tree visualization list.

|lkﬂci|

Jip = max
F i=1,..,n |llc] Ci|’

(5)

c1,Co,...chp €EH

Table 2 presents the results of 11 relatively important design
features related to visual elements, the coordinate system

TABLE 1
Comparison of GVAE Autoencoder Accuracy
GVAE latent dimension 2 20 100
Accuracy 0.619 0.904 0.9292

and the layout. The full table can be found in the supple-
mental material, available online. From the results, we can
see that the MDS, UMAP, and two-dimensional embedding
results have larger values. Considering the accuracy of the
GVAE model (Table 1) and the non-deterministic character-
istic of UMAP techniques, GoTreeScape finally employs
MDS projection method to compute the overview of tree
visualization design space.

4.2.5 Landscape Visual Guidance

For users to understand where they are situated in the con-
structed landscape, and to be able to decide on where to
explore next, they need visual guidance. One such indicator
provide in GoTreeScape is density-based contours, which
show users the distributions of tree visualizations. The second
is the representative tree visualizations across the landscape,
which help users to understand whether optional tree visual-
izations within a certain range will meet their requirements.
The third is the boundaries between tree visualization clus-
ters, making the top-level structure visually distinctive. From
these, users can decide whether to continue exploring at a

finer granularity. Given that the above landscape construction
TABLE 2
Comparison of Dimensionality Reduction Techniques

design Latent(20) Latent(20) Latent(20) Latent(2)
features MDS UMAP t-SNE

cartesian 0.89 0.78 0.50 0.91
polar 0.57 0.49 0.48 0.92
rectangle 0.51 0.44 0.41 0.64
circle 0.68 0.49 0.26 0.32
triangle 0.28 0.22 0.13 0.29
ellipse 0.22 0.15 0.07 0.23

y: include 0.23 0.15 0.16 0.17

y: juxtapose 0.43 0.40 0.26 0.49

x: within 0.31 0.30 0.28 0.34

x: align 0.33 0.33 0.24 0.47

x: flatten 0.44 0.40 0.29 0.48

826
827
828
829
830
831
832
833

834

835
836
837
838
839
840
841
842
843
844
845
846

847
848
849
850

852
853
854
855
856
857
858
859
860

861

862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887

888
889
890

891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906

10

method is designed to keep neighboring items relatively simi-
lar to the user’s perception, it becomes possible to only show
representative landmarks instead of each tree visualization in
detail. To show these landmarks at different levels of zoom,
hierarchical clustering is performed on the collection of tree
visualizations and representative items from the clusters are
computed at different clustering levels. Furthermore, GoTree-
Scape computes the cluster boundaries based on clustering
centers using a Voronoi diagram [61]. Fig. 6 presents the land-
scape with the above three visual guides. According to Cen-
eda’s [62] conceptual guidance framework, our visual
guidances orient users towards regions that are worthwhile
zooming into. This addresses the knowledge gaps pertaining
to the target being unknown.

Algorithm 1. Landmark Selection Algorithm

Require:
- T indicates a tree visualization collection.
- F indicates the design feature list, which consists of tree visu-
alization design features and each feature is denoted as f;.
- W indicates the design feature weight list, which consists
of the corresponding weight w; of each design feature f;.
- n indicate the amount number of the selected landmarks.
Ensure: - The selected landmark list L of 7.
1: construct design feature hierarchy H based on F, each node
h; of H contains a design feature f;. h, denotes the root of H.
2: reorganize design feature hierarchy H according to W.
3: fort € T do
4. Count_Feature(h,, t) >traverse H and count for each ¢
5: end for
6: for h; € Bottom_Up_Traversal(H) do
7. Compute_Representative(h;, n)
8: end for
9: L + h,.R[n] >R[n] of h, is the selected landmarks
10: function Compute_Representativeh;, n
11: S, indicates a selected representative tree. S, [i][j] indicates
selected results from the first ¢ children of h;.
12: S indicates the importance of corresponding
representative trees in S,.
13: fori € (0, h;.children.length) do
14: forje (0,n+1)do

15: k*=arg maxyye o ;) Si[i-11[5-1

16: + h;.children[i] I[k] + 37, , % x h;.count
17: Si[4][4] = Si[i-11[j-k*] + h;.children[:].I[%*]
18: + Z{:%k* Y% hi.count

19: S, [i][j] = Sy [-11[j-k*] + h;.children[i]. R[£*]
20: end for

21: end for

>the last row
>the last row

22: hI=S,[-1]

23: h,R = S,[-l]

24: end Function

25: function Count_Featureh, t
26: hindicates a node of design feature hierarchy H.
27: tindicates a tree visualization declarative grammar.
28: if t.Match_Design_Feature(h) then

29: h.count+=1

30: for hepilg € h.children do

31: Count_Feature(heig, t)
32: end for
33: endif

34: end Function

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

8- 5 - 3 Y
T B L T <N
) e 8.8 P
: PR, L e [4 r. . o lbe,
X - e o3 g -
* s e 2T “'i\ . o . - ;'.' - -
. AR TS ‘
D 0\ mie§
(A 7 % | g o
i 5 =
o
- i

Fig. 6. GoTreeScape with three visual guidance: density-based contour,
representative tree visualizations, and boundaries between tree visuali-
zation clusters.

With the help of a declarative grammar, tree visualizations
can be thought of as a combination of different design feature
attributes. Therefore, the representative tree visualizations
selected for display should span as many attributes and com-
binations of attributes as possible. Furthermore, different
attribute values will have a different number of associated
tree visualizations. Taking the CoordinateSystem attribute as
an example, many fewer tree visualizations are associated
with the value Cartesian than the value polar. This is because
the polar coordinate system comes with many fine-grained
design features, such as PolarAxis and CentralAngle. There-
fore, if a random sampling method were to be used, the major-
ity of the representative tree visualizations selected would be
based on a polar coordinate system. Additionally, a random
sampling technique assumes that each design feature has the
same magnitude of impact on the tree visualization results.
However, the opposite is true, as explained in Section 4.2.2.
To fill this gap, we designed a dynamic programming algo-
rithm (Algorithm 1) to select the most representative tree visu-
alizations. The inputs to the algorithm are the collection of tree
visualizations (T'), the design feature list (/') with the corre-
sponding weights (W) of the design features, and the number
of the representative tree visualizations that should be
selected (n). The algorithm then proceeds through the follow-
ing four steps: (1) Construct a hierarchical data H for the
design features based on F, where each node & of the hierar-
chy contains a design feature and a specific attribute value. (2)
Reorganize the design feature hierarchy according to . Ini-
tially, the design features are arranged in descending order of
weight from heaviest to lightest. But, to avoid selecting sym-
metrical tree visualizations for the representative list, the hier-
archy groups the layout-related design features along the
horizontal and vertical axis together. The reorganized design
feature hierarchy is shown in Fig. 7; (3) Compute the number
of tree visualizations associated with different design features
in the hierarchy, denoted as h.count, which is an important
factor for computing the importance of the representative
items. (4) Traverse the hierarchy in a bottom-up manner and
select the representative tree visualizations. For each node #,
the dynamic programming algorithm defines the state .S; [][;]
as the importance of selecting the j most representative tree
visualizations from the first i children, while S, [#][;] is defined
as the selected tree visualization results corresponding to
S;i[t][j]. Selecting one tree visualization as being representative
of a design feature has a positive correlation with both the

907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951

952
953
954
955
956

958
959
960
961

962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993

LI AND YUAN: GOTREESCAPE: NAVIGATE AND EXPLORE THE TREE VISUALIZATION DESIGN SPACE 11

(Dremove design feature attribute

@\ (2 remove design feature
X (@ remove feature combination
simplify tree vis
% design space
—>

(a) tree visualization design space

(b) design space after simplification

reorganize design space

QO tree vis collection
node ST

coordinate
system

coordinate

parent-child
system

relations (x)
sibling
relations (x)

node ?

parent-child
relations (x)
sibling

& relations (x)

(c) design space after reorganization

Fig. 7. The simplification and restructuring of the tree visualization design space. Three hierarchies represent the design space of tree visualizations.
Within the hierarchy, each row refers to one design feature and each link indicates one specific design feature attribute. The left hierarchy displays
the simplification for the whole design space, the middle one shows the remaining design features and the attributes of the design space after simpli-
fication, and the right one arranges the design features according to human perception.

weight of the design features and the number of tree visualiza-
tions related to that design feature. It also has a negative corre-
lation with the number of already-selected representative
items [. As a result, the state transfer function is defined as
follows:

Sili][g] = Si[i — 1][j — k] + h.children[i].I[k] + Z
15—k

w
7 X h.count

(6)

The number of design features in F as is defined as f, and
the complexity of the algorithm for selecting representative
tree visualizations is O(n f?).

4.3 Data-Oriented Exploratory Framework

The data-oriented exploratory framework helps users to find
the appropriate tree visualizations. As explained in Sec-
tion 4.2, embeddings are learned from the visualization spec-
ifications, independent of any particular hierarchical data.
However, various features of the hierarchical data are critical
for determining tree visualizations, such as deep/shallow,
large/small, balanced/unbalanced, and regular/irregular.
As aresult, GoTreeScape has to load the targeted hierarchical
data and generate all visualization results based on them
when presenting the constructed landscape to users. As
explained in Section 4.2.5, the landscape provides a large
number of tree visualization previews to guide users’ explo-
rations. However, too much hierarchical data will impose a
huge rendering burden on the system. Additionally, the
small display space of the preview panel will not be able to
accommodate the visualization results. To solve this prob-
lem, GoTreeScape calculates a new derived attribute called
the Strahler Number [63] for each node termed the Strahler
number. The Strahler number serves as a measure of a node’s
importance according to the topological structure of the hier-
archical data. Specifically, the central nodes have large val-
ues, while the peripheral nodes have low values. This means
the complex hierarchical data at two different abstraction
levels. The more simplified one serves as the underlying
data of selected landmarks on the landscape. The other one
is used as the underlying data for the preview panel. The
benefit of this method is that the simplified results retain the
key characteristics of the topological structure. Fig. 8 shows
the sampling results from the Flare package” structure with
different thresholds. With this sampling method, GoTree-
Scape allows the data-oriented exploration by showing the

2. github.com/d3/d3-hierarchy/blob/main/test/data/flare.json

simplified hierarchical data visualization results in the pre-
view panel instead of the original hierarchical data.

With the help of representative landmarks displayed on
the landscape, users should be able to continuously make
design decisions based on the results and accordingly pro-
vide feedback as input to interactively control the explor-
atory design process. The information determined by
users about target tree visualizations in different applica-
tion scenarios have significant differences. Before explor-
ing the design space, users may not have any explicit
requirements in mind. Alternately, they may have some
loose ideas about design features, such as “the tree visuali-
zation should contain circular elements”. Last, they may
have a very fixed idea about the tree visualization type,
e.g., it should be a “node-link diagram”. To address each
user’s various requirements, GoTreeScape includes an
exploratory framework that offers users three different
exploration modes: top-down, bottom-up and hybrid
exploration, as shown in Fig. 10. Note that these three
exploration modes do not refer to users’ patterns of zoom-
ing-in and out. They are motivated by the sensemaking
models [64] from visual query systems. The top-down pro-
cess is goal-oriented, where users gradually determine
specific design features to concretize the target visualizations
in their minds. By contrast, the bottom-up process is data-
driven and initiated by a pre-determined tree visualization.
Here, the GoTreeScape system “recommends” other tree vis-
ualizations as “stimuli” to drive users’ explorations. In par-
ticular, these recommendations are not driven by a
recommendation system in the data science sense of the
word. Users still need to make navigation decisions as they
move through a series of tree visualization landmarks in the
landscape during exploration.

o 0080060 ‘/.\‘ ““.\‘ L
T 110

(@) (b)

Fig. 8. The sampling results of the Flare package structure. There tare
258 nodes in the hierarchical data. (a) The threshold of the Strahler num-
ber is 3 and, after sampling, 29 nodes remain. (b) The threshold is 8 and
the number of nodes after sampling is 13.

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026

1027

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

1051

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

1075

1076
1077
1078
1079
1080
1081
1082
1083
1084

12

4.3.1 Top-down Mode

When users do not have any explicit requirements as they
embark on building a tree visualization, their target visual-
izations might exist in any part of the entire landscape. This
exploratory mode is defined as top-down and spans the
entire design space as a starting point. As explained in Sec-
tion 4.2.5, the landscape displays a series of tree visualiza-
tion landmarks. Users can compare these tree visualization
landmarks and then determine the design features they pre-
fer to make their target more concrete. These landmarks dis-
played on the landscape also help users determine the range
of the target tree visualizations, from which users can nar-
row down their scope of exploration. As the scope narrows
and focuses, GoTreeScape displays more fine-grained land-
marks to help users make further design decisions. By
repeating the above exploration process, users eventually
locate their target visualizations on the landscape. The red
arrows in Fig. 10 show the users’ exploration path in the
top-down mode. Top-down exploration mode also supports
the application scenarios where users only have partial
design requirements. The difference is that the starting
point of the exploration process is filtered to only show that
part of the design space that meets the user’s predetermined
requirements instead of the entire landscape.

4.3.2 Bottom-up Mode

Prior to exploratory design, users might already have a pre-
determined tree visualization (denoted as p) that corre-
sponds to a specific item on the landscape. Here, the user’s
goal is exploring whether there might be other tree visual-
izations that are more appropriate than the one in mind. In
this exploration mode, users start with a pre-determined
tree visualization and gradually expand their scope to the
entire landscape. This is a bottom-up exploration process.

The blue arrows in Fig. 10 show the user’s exploration
path in bottom-up mode. The path consists of the two
steps—The first is to locate p on the landscape. Here, the
encoder module outlined in Section 4.2.4 transforms the
user’s input into a vector in the latent space. The item’s posi-
tion on the landscape is computed using the interpolation
method used by Chartseer [20]. The second step is to find a
collection of related tree visualizations from the landscape to
help the user determine whether a tree visualization other
than p better meets their requirements. To this end, GoTree-
Scape displays the top k tree visualizations that are most sim-
ilar to p but from different clusters. As shown in Fig. 10, users
can adjust the level interactively by selecting related tree vis-
ualizations. Hence, a tree visualization selected from the
lower level could be more similar to p.

4.3.3 Hybrid Mode

The top-down and bottom-up modes are not isolated.
Rather, users can flexibly switch between two different
modes within their exploratory design process. For example,
one user might start in top-down exploration mode and then
once s/he finds a satisfying tree visualization, switches to
the bottom-up mode to locate similar visualizations in the
landscape at different levels as shown by the green arrows in
Fig. 10). Alternatively, a user might have a tree visualization
in mind and locate it in bottom-up mode. But when they find

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

a tree visualization that does more to satisfy their require-
ments, they may switch to top-down exploration mode to for
a more comprehensive exploration of the neighborhood.

4.4 User Interface and Interaction

Guided by all the above considerations, we designed a proto-
type system of GoTreeScape. The user interface consists of
five interactively coordinated views. The main view is the
landscape panel (Fig. 10a), which shows an overview of the
tree visualization design space augmented by a small “bird’s-
eye” view as an orienting tool. A small rectangle within the
overview shows the region viewable within the landscape.
Visual guidance on the landscape consists of density-based
contours and representative landmarks. After users upload
their hierarchical data, GoTreeScape simplifies the data used
to display the landmarks and the preview panel. The system
further selects some landmarks to display in the correspond-
ing visualization results while mapping other landmarks to
circles. To help users make decisions, they can click on a land-
mark, which will show the visualization results in the preview
panel (Fig. 10b). The right side of the preview panel provides a
series of operations for the selected tree visualization, includ-
ing switching to bottom-up mode based on the visualization,
saving the visualization into the gallery, opening the visuali-
zation in Tree Illustrator, and checking the related tree visual-
izations after fine-tuning the parameters.

Users can flexibly adjust the displayed range of the land-
scape to suit their requirements. In top-down mode, users
can decide the range of subsequent explorations interac-
tively according to the landmarks. Additionally, users can
zoom in to show the tree visualizations at a finer granularity
or zoom out to change the determined design dimension.
Our interface also supports users to filter for the exploratory
design on the landscape panel. For example, the view will
be updated according to the provided input query in
Fig. 10e. Bottom-up mode includes a data uploading panel
(Fig. 10d) that allows users to upload a tree visualization of
GoTree grammar in JSON format. GoTreeScape also pro-
vides users with a collection of classic tree visualizations, as
shown in Fig. 10c.

4.5 Implementation

GoTreeScape comprises a back-end exploration engine and a
front-end user interface, with both being based on a pre-
trained auto-encoder. The deep learning model was built
using Tensorflow. Dimension reduction is handled by
MDS [53], and the hierarchical clustering method used is
from the Sklearn Python library. For the parameters of hierar-
chical clustering method, we set the distance metric as euclid-
ean and the linkage criterion as ward. The front-end user
interface uses D3 [9] based on scalable vector graphics (SVG).
Specifically, we used the library provided by GoTree [4] to
visualize the different trees. The source code for GoTreeScape
is available at GitHub’.

5 CASE STUDIES

To demonstrate the effectiveness and usefulness of GoTree-
Scape, we invited one visualization researcher (VR) and one

3. https:/ /github.com /bitvis/gotreescape

1085
1086
1087

1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123

1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136

1137

1138
1139

1140
1141
1142
1143
1144
1145
1146
1147
1148

1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

LI AND YUAN: GOTREESCAPE: NAVIGATE AND EXPLORE THE TREE VISUALIZATION DESIGN SPACE 13

GoTreeScape - Find candidate tree visualizations

i @i @ e ®

- galact

e D ea
b "= - export

>

() Sl o @
: : BE " ey L d
so0m P 8 e et
5 I o
. . a '11;‘;ﬁ§ a]
ot e e = _."‘-_ EB C =
....... b 4 b O " h @
= i o
: 1
R
— e 5
., -, s N
== - export ¢

Fig. 9. The top-down exploration mode in the tree visualization design space. The top row shows the process of finding the candidate tree visualiza-
tions using GoTreeScape. (a) shows the entire landscape of the tree visualization design space. (b) shows the remaining landscape after filtering the
tree visualizations to only show trees with rectangular nodes and using the polar coordinate system. (c) selecting the tree visualizations that meet a
user’s requirements. (d) zooming in on the lower levels of the landscape to select more tree visualizations. The selected tree visualizations are saved
in a gallery. The bottom row shows the process of fine-tuning the selected tree visualizations. (e) and (f) show two fine-tuned visualization results

from the user’s uploading hierarchical data.

visualization designer (VD), who each had two to four
years’ experience in designing visualizations and visual
analytic systems. They were given a brief introduction on
how to use the prototype system, and talked through the
interface designs and system functionalities. We then asked
them to apply GoTreeScape into their own tree visualization
design scenario. This section presents the workflows from
these two use cases and concludes with the users’ feedback
on the system.

5.1 Case 1: Top-down mode
Our first user, VD, is a visualization designer that does not
have a programming background. He needed to design a
tree visualization to illustrate the reposting process in social
media. A reposting tree is typical example of hierarchical
data, where a node represents a message, and a link repre-
sents a repost. Further, this hierarchical data contained
much information. For example, each node contained infor-
mation about the reposted messages, such as its content and
emotional attitude of the poster, as well as information
about the authors, including their age, gender, and location.
VD’s predetermined requirements for the visualization
were that it should have a circular shape and be able to
encode several attribute values alongside the nodes and links.
This requirement meant he could filter out tree visualizations
based on the Cartesian coordinate system (because they do
not have a circular shape), and any tree visualizations with
hidden nodes (because they cannot encode attribute values
into the visual elements). The first step VD took was to
upload his hierarchical data into the GoTreeScape system.
The data had a depth of 5 and 264 nodes. At this point, the
landscape showed many visualization previews, the under-
lying data of which is the hierarchical data after sampling
based on the computation of Strahler number, as explained
in Section 4.3. VD therefore adjusted the number and specific
items of the tree visualization previews to be displayed on
the landscape. From this, he learned that the tree visualiza-
tions with rectangular nodes had many design variations, so

he filtered the landscape to only show tree visualizations
with rectangular visual elements (see Fig. 9a). Next, he began
to explore the remaining landscape (see Fig. 9b). He identi-
fied many tree visualizations that meet his requirements, sav-
ing each as he came across them to the gallery (see Fig. 9c¢).
He continued to zoom into the landscape from the top level
to the bottom level, putting any tree visualizations of particu-
lar interest in the center to check for additional related results
(see Fig. 9d). Ultimately, VD decided on a candidate tree visu-
alization collection that meets his initial requirements—a cir-
cular shape with rectangular nodes. VD perused his selected
tree visualizations in the gallery and then switched to Tree
Illustrator to fine-tune the results, as shown in the bottom
row of Fig. 4.3. GoTreeScape helped VD to determine the par-
ent-centric tree visualizations because each message during
the reposting process needs to be analyzed as a center for

Fig. 10. GoTreeScape’s exploratory framework. The framework consists
of three modes, top-down (arrows in red), bottom-up (arrows in blue),
and hybrid (arrows in green). GoTreeScape contains five panels, (a) the
landscape panel, (b) the preview panel, (c) the traditional tree visualiza-
tion panel, (d) the uploading panel, and (e) the filtering panel.

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192

1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205

1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237

1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250

14

comparison. Figs. 9e and 9f show two circular-shaped tree
visualization results. The difference is that the left one
emphasizes the topology, because the subtrees are the same
size, while the right one emphasizes the attribute values (the
sizes of the subtrees are relative to their width).

Satisfied with his selected tree visualizations and is also
inspired by the visualization results during the exploration
process. VD mentioned that he planned to use the size of
subtrees’ circles to encode the underlying messages’
impacts. Additionally, he would color the circles to encode
positive or negative attitudes and arrange the subtrees in a
clockwise direction according to the time sequence of the
reposting behaviors.

5.2 Case 2: Bottom-up mode

Our second use case shows how GoTreeScape can guide
users to explore novel tree visualization designs. VR men-
tioned that he always designs tree visualizations based on a
collection of alternative options and further explores the
design space according to different application scenarios.
More specifically, when designing visual analytic systems, he
would like a novel tree visualization technique as opposed to
just applying known tree visualizations directly because
existing tree visualizations are often not applicable to a spe-
cific problem at hand. The method therefore places novelty
as a priority. To achieve this task, VR reproduced some of the
existing tree visualizations in treevis.net [8] using GoTree. He
then located and marked them on the GoTreeScape. Fig. 11a
shows the landscape with labels for the existing tree visual-
izations. VR learned the distributions of the existing tree visu-
alizations from the landscape, supporting further exploration
for different scenarios. When looking to discover some novel
tree visualizations, VR explored the upper-left corner of the
landscape where there were with only few existing tree visu-
alizations. The left part of Fig. 11a shows some inspiring tree
visualizations found by VR using GoTreeScape. When look-
ing to improve a tree visualization, VR first located the tree
visualization in GoTreeScape. He then explored other possi-
ble candidates to find novel tree visualizations from the
neighboring area through the bottom-up exploration mode.
These tree visualizations can provide users with much inspi-
ration and improve the efficiency with which they can
explore novel ideas. Fig. 11b shows the landscape when an
icicle plot tree visualization was set as the focus of the bot-
tom-up exploration. Here, VR found some tree visualizations
following an annual-ring shape in the landscape.

5.3 User Feedbacks

After they had used GoTreeScape, we conducted one-to-one
30-minute interviews with the two participants to collect
their feedback. During the interview, the participants were
encouraged to comment and ask questions on any aspect of
GoTreeScape they felt was important. We answered their
questions and made detailed records of their response. VD
commented on the diversity of the tree visualizations
displayed on the landscape: “It is amazing to me that so many
possible tree visualizations exist.”. VR was satisfied that
GoTreeScape could provide so many tree visualization pre-
views directly: “I am impressed that [GoTreeScape] can provide
me with tree visualization results directly so that I can judge the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

@

Fig. 11. Top: The distribution of existing tree visualizations in the GoTree-
Scape. The right part shows some inspiring tree visualizations identified
by users. Bottom: The bottom-up exploration process start from the tree
visualization highlighted with the red border. The right part shows some
tree visualizations in annual ring form.

novelty of techniques more efficiently.” Another interesting find-
ing was that users could not understand some of the tree vis-
ualizations during the exploratory design. For example, VD
proposed the questions: “I do not understand why [an unreason-
able treevis] is a tree visualization.” The tree visualizations that
VD did not understand fell into two main categories. The
first category did not show the topological structure clearly.
The second category contained some novel tree visualiza-
tions, and users were not sure about their benefits and appli-
cation scenarios. This shows that GoTreeScape exposes users
to know some very different tree forms (as well as some
unreasonable tree visualizations) that fit the rules for encod-
ing their hierarchical information. Even though these trees
may not be an efficient form of visualization, it does give
users knowledge that there are some stones unturned.

6 DiISCUSSION AND FUTURE WORK

The solutions competing with GoTreeScape include treevis.
net [8], Tree Illustrator [4], and the phylogenetic tree-based
method (PT) [28]. Given these competing solutions differ in
the motivation, expressiveness, the availability of tutorials,
and system prototypes, which involve many confounding
variables, we did not conduct a quantitative user experi-
ment to evaluate GoTreeScape. Rather, we compared
GoTreeScape with the alternatives in four aspects: the num-
ber of tree visualizations; whether they differentiate differ-
ent design features; whether an overview is provided; and
whether an exploratory design framework is provided. The
matrix of answers are shown in Table 3. As can be seen,
GoTreeScape is the only method that meets every criteria as

1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

1266

1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279

1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331

LI AND YUAN: GOTREESCAPE: NAVIGATE AND EXPLORE THE TREE VISUALIZATION DESIGN SPACE 15

TABLE 3
Comparison of Design Space Exploration Techniques
Techniques Treevis.net Phylogenetic-tree-based method Tree Mlustrator GoTreeScape
Number of tree visualizations 333 35 countless 62340
Design feature differentiation No Yes No Yes
Show overview No Yes No Yes
Provide exploratory framework No Yes No Yes

well as offering a large number of tree visualizations. The
PT method provides an overview based on a phylogenetic
tree and allows users to specify the weights of design fea-
tures dynamically. However, it only contains 35 tree visual-
izations. treevis.net has assembled 333 visualizations (at the
time of this writing) and classifies them according to their
dimensionality, representation, and alignment, but it does
not provide users with an overview or a way to explore
them. Users can select any tree visualizations existing in
GoTreeScape using Tree Illustrator, but Tree Illustrator
does not provide an overview and users need to gradually
determine the design features without viewing the tree
visualization results. As such, Tree Illustrator requires users
to have a clear target in mind before they start building their
visualization. By contrast, GoTreeScape allows users to
directly select the satisfactory tree visualizations, after
which they can continue to make fine-grained adjustments.

Although GoTreeScape employs domain expertise to filter
the generated collection of tree visualizations, some unreason-
able tree visualizations will still appear. These tree visualiza-
tions do place a cognitive burden on the users, hindering
efficient exploration, because these tree visualizations are
especially difficult to understand. However, from our case
studies, we found that these unreasonable trees provided the
users with inspirations during their exploration process.
Hence, we plan to deploy this system online and track this
activity within a community of users in the future. With more
feedback, we can better estimate a good distribution of tree
visualizations. Further, as more and more users participate,
such estimations will derive a more intuitive exploratory
design tool, creating a self-reinforcing system that becomes
easier to use. By collecting the users’ exploration paths, we
might also be able to automatically recommend tree visualiza-
tions to users based on other users’ previous decisions.

To construct an overview of tree visualization design
space, we studied the generated tree visualization collection
and extracted insights to guide the loss function and the
model structure design. We assigned various weights to the
design features according to the magnitude of impact that
features would have on tree visualizations. The hypothesis is
that the similarities between tree visualizations in terms of
human cognition related to the impact of the visual channel.
For example, changing the coordinate system always
changes both node shapes and the layout of the tree visual-
izations. Therefore, the coordinate system design feature has
the most significant impact on tree visualizations from the
standpoint of human cognition. However, human cognition
over different design features in the realm of tree visualiza-
tions is still an open question. The design features of some
tree visualizations make a significant differences, but their
visualization results are similar — for example, the triangle
and sectors visual elements in the polar coordinate system.

Therefore, when users make decisions about further explora-
tion based on the GoTreeScape, they need to consider both a
single tree visualization and the other tree visualizations in
that context. We plan to design comprehensive user experi-
ments to explore the relationships between human cognition
and the tree visualizations” design features. Part of this will
involve comparing the preferences of different users (e.g.,
data scientists and visual designers) when it comes to image-
based and grammar-based landscape construction methods.
In addition, we will explore the techniques to better realize
the consistency between the grammar design and the visuali-
zation results. Keeping the efficiency of computing a layout
in mind, we intend to use a data-independent techniques.
Additionally, GoTreeScape makes the data-oriented explora-
tion of the design space possible by allowing users to upload
their hierarchical data from which all tree visualization
results are generated. It would therefore be interesting to
explore a data-dependent landscape construction method.
We also plan to improve the constructed landscape in terms
of the machine learning models. For example, we may be
able to design the model’s structure in a way that preserves
the hierarchy of the design features better.

GoTreeScape is not targeted at the whole process of tree
visualization design, such as the domain situation and data/
task abstraction in the nested model by Munzner [7]. It only
focuses on the step of exploring the design space so as to find
a suitable tree visualization when users are not clear about
their targeted visualizations or only have partial design fea-
tures in mind. More specifically, GoTreeScape helps users
understand the tree visualization design space. It helps them
expand their known space and their consideration space.
GoTreeScape uses the metaphor of contour-based map to
present the tree visualization design space, where the con-
tours of the landscape indicate the distribution of visualiza-
tions. In the future, we plan to explore the other map
metaphors for design space visualizations. For example, a
grid-based metaphor [65] might present more explicit bound-
aries between different clusters and avoids the overlapping
between representative landmarks on the landscape. In addi-
tion, it would also be interesting to conduct user experiments
to compare the effectiveness of different map metaphors for
presenting visualization design spaces. Lastly, the methods
proposed in this work could be modified for use as a way to
explore the design space of other visualization subcategories
with a declarative grammar, for example, ATOM [3] (for unit
visualizations), multiclass density maps [5], and so on. In
the future, we plan to use the techniques in GoTreeScape
for other visualizations. With the increasing number of
declarative grammars proposed in visualization research
communities, it may also be worthwhile designing a general
framework for visualization design space exploration based
on declarative grammars.

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383

1384

1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399

1400

1401
1402

1403

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448

16

7 CONCLUSION

In this paper, we presented GoTreeScape, a system that helps
users to navigate and explore the tree visualization design
space implied by a fine-grained declarative grammar.
GoTreeScape comprises three parts: visualization set genera-
tion, landscape construction, and an exploration framework.
An encoder-decoder architecture is used to project tree visu-
alizations into a two-dimensional landscape. We employ
domain expertise to simplify the visualization set and guide
the model design. To address user’s varying requirements
and scenarios, GoTreeScape provides an exploration frame-
work with top-down, bottom-up, and hybrid modes within
GoTreeScape. We applied GoTreeScape to several tree visu-
alization design scenarios within two case studies to demon-
strate its usability. The results show that GoTreeScape can
expand the diversity of constructed tree visualizations.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their help-
ful comments and valuable feedback.

REFERENCES

[1] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer,
“Vega-Lite: A grammar of interactive graphics,” IEEE Trans. Vis.
Comput. Graph., vol. 23, no. 1, pp. 341-350, Jan. 2017.

[2] A. Satyanarayan and J. Heer, “Lyra: An interactive visualization
design environment,” Comput. Graph. Forum, vol. 33, no. 3,
pp. 351-360, 2014.

[3] D.Park, S. M. Drucker, R. Fernandez, and N. ElImqvist, “Atom: A
grammar for unit visualizations,” IEEE Trans. Vis. Comput. Graph.,
vol. 24, no. 12, pp. 3032-3043, Dec. 2018.

[4] G. Li, M. Tian, Q. Xu, M. J. McGuffin, and X. Yuan, “GoTree: A
grammar of tree visualizations,” in Proc. ACM Conf. Hum. Factors
Comput. Syst., 2020, pp. 1-13.

[51 J.Jo, F. Vernier, P. Dragicevic, and J. Fekete, “A declarative ren-
dering model for multiclass density maps,” IEEE Trans. Vis. Com-
put. Graph., vol. 25, no. 1, pp. 470-480, Jan. 2019.

[6] L. Wilkinson, The Grammar of Graph.. Berlin, Germany: Springer,
2005.

[7]1 T. Munzner, Visualization Analysis and Design. Boca Raton, FL,
USA: CRC Press, 2014.

[8] H.Schulz, “Treevis.net: A tree visualization reference,” IEEE Com-
put. Graph. Appl., vol. 31, no. 6, pp. 11-15, Nov.-Dec. 2011.

[91 M. Bostock, V. Ogievetsky, and]. Heer, “D% Data-driven doc-

uments,” IEEE Trans. Vis. Comput. Graph., vol. 17, no. 12,

pp- 2301-2309, Dec. 2011.

G. Li, M. Tian, Q. Xu, M. J. McGuffin, and X. Yuan, “Tree Illustrator:

Interactive construction of tree visualizations,” in Proc. Extended

Abstacts ACM Conf. Hum. Factors Comput. Syst., 2020, pp. 1-4.

H. Schulz, Z. Akbar, and F. Maurer, “A generative layout approach

for rooted tree drawings,” in Proc. IEEE Pacific Visualization Symp.,

2013, pp. 225-232.

J. O. Talton, D. Gibson, L. Yang, P. Hanrahan, and V. Koltun,

“Exploratory modeling with collaborative design spaces,” ACM

Trans. Graph., vol. 28, no. 5, pp. 1-10, Dec. 2009.

T. J. Jankun-Kelly and K.-L. Ma, “A spreadsheet interface for

visualization exploration,” in Proc. IEEE Visualization, 2000,

pp- 69-76.

J. Marks et al., “Design galleries: A general approach to setting

parameters for computer graphics and animation,” in Proc. Conf.

Comput. Graph. Interactive Techn., 1997, pp. 389—-400.

T. J. Jankun-Kelly and Kwan-LiuMa, “Visualization exploration

and encapsulation via a spreadsheet-like interface,” IEEE Trans.

Vis. Comput. Graph., vol. 7, no. 3, pp. 275-287, Mar. 2001.

E.H. Chi, P. Barry, . Riedl, and J. Konstan, “A spreadsheet approach

to information visualization,” in Proc. VIZ: Visualization Conf. Inf.

Visualization Symp. Parallel Rendering Symp., 1997, pp. 17-24.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371]

[38]

[39]

[40]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

M. Beham, W. Herzner, M. E. Groller, and J. Kehrer, “Cupid: Clus-
ter-based exploration of geometry generators with parallel coordi-
nates and radial trees,” IEEE Trans. Vis. Comput. Graph., vol. 20,
no. 12, pp. 1693-1702, Dec. 2014.

K. Wongsuphasawat et al., “Voyager 2: Augmenting visual analy-
sis with partial view specifications,” in Proc. ACM Conf. Hum. Fac-
tors Comput. Syst., 2017, pp. 2648-2659.

K. Wongsuphasawat, D. Moritz, A. Anand, J. D. Mackinlay, B.
Howe, and]J. Heer, “Voyager: Exploratory analysis via faceted
browsing of visualization recommendations,” IEEE Trans. Vis.
Comput. Graph., vol. 22, no. 1, pp. 649-658, Jan. 2016.

J. Zhao, M. Fan, and M. Feng, “Chartseer: Interactive steering
exploratory visual analysis with machine intelligence,” IEEE Trans.
Vis. Comput. Graph., vol. 28, no. 3, pp. 1500-1513, Mar. 2021.

S. Xu, C. Bryan, J. K. Li, J. Zhao, and K. Ma, “Chart constellations:
Effective chart summarization for collaborative and multi-user
analyses,” Comput. Graph. Forum, vol. 37, no. 3, pp. 75-86, 2018.

B. Kerr, “THREAD ARCS: An email thread visualization,” in Proc.
IEEE Symp. Informat. Visualization, 2003, pp. 211-218.

T. Munzner, F. Guimbretiere, S. Tasiran, L. Zhang, and Y. Zhou,
“TreeJuxtaposer: Scalable tree comparison using focus+context
with guaranteed visibility,” ACM Trans. Graph., vol. 22, no. 3,
pp- 453—462, Mar. 2003.

F. Block, M. S. Horn, B. C. Phillips, J]. Diamond, E. M. Evans, and
C. Shen, “The DeepTree exhibit: Visualizing the tree of life to facil-
itate informal learning,” IEEE Trans. Vis. Comput. Graph., vol. 18,
no. 12, pp. 2789-2798, Dec. 2012.

B. Johnson and B. Shneiderman, “Tree maps: A space-filling
approach to the visualization of hierarchical information
structures,” in Proc. IEEE Visualization, 1991, pp. 284-291.

G. Li et al, “BarcodeTree: Scalable comparison of multiple
hierarchies,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 1,
pp- 1022-1032, Jan. 2020.

S. Zhao, M. J. McGuffin, and M. H. Chignell, “Elastic hierarchies:
Combining treemaps and node-link diagrams,” in Proc. IEEE
Symp. Inf. Vis., 2005, pp. 57-64.

S. Li et al., “Exploring hierarchical visualization designs using
phylogenetic trees,” in Visualization and Data Analysis. Bellingham,
WA, USA: SPIE, 2015, pp. 68-81.

H.-J. Schulz and S. Hadlak, “Preset-based generation and explora-
tion of visualization designs,” J. Vis. Lang. Comput., vol. 31, pp. 9-29,
2015.

H. Schulz, S. Hadlak, and H. Schumann, “The design space of
implicit hierarchy visualization: A survey,” IEEE Trans. Vis. Com-
put. Graph., vol. 17, no. 4, pp. 393-411, Apr. 2011.

T. Baudel and B. Broeksema, “Capturing the design space of
sequential space-filling layouts,” IEEE Trans. Vis. Comput. Graph.,
vol. 18, no. 12, pp. 2593-2602, Dec. 2012.

S. MacNeil and N. Elmqvist, “Visualization mosaics for multivari-
ate visual exploration,” Comput. Graph. Forum, vol. 32, no. 6,
pp- 38-50, 2013.

A. Slingsby,]. Dykes, and J. Wood, “Configuring hierarchical lay-
outs to address research questions,” IEEE Trans. Vis. Comput.
Graph., vol. 15, no. 6, pp. 977-984, Nov. /Dec. 2009.

S. K. Card and J. Mackinlay, “The structure of the information
visualization design space,” in Proc. VIZ: Visualization Conf. Infor-
mat. Visualization Symp. Parallel Rendering Symp., 1997, pp. 92-99.
W. Javed and N. Elmqvist, “Exploring the design space of com-
posite visualization,” in Proc. IEEE Pacific Visualization Symp.,
2012, pp. 1-8.

J. F. Rodrigues, A. J. M. Traina, M. C. F. de Oliveira, and C. Traina,
“The spatial-perceptual design space: A new comprehension for
data visualization,” Inf. Visualization, vol. 6, no. 4, pp. 261-279,
2007.

M. Tory and T. Moller, “Rethinking visualization: A high-level
taxonomy,” in Proc. IEEE Symp. Inf. Visualization, 2004, pp. 151-158.
Y. S. Kristiansen and S. Bruckner, “Visception: An interactive
visual framework for nested visualization design,” Comput.
Graph., vol. 92, pp. 13-27, 2020.

M. Brehmer, B. Lee, B. Bach, N. H. Riche, and T. Munzner,
“Timelines revisited: A design space and considerations for
expressive storytelling,” IEEE Trans. Vis. Comput. Graph., vol. 23,
no. 9, pp. 2151-2164, Sep. 2017.

A. Kerren, K. Kucher, Y.-F. Li, and F. Schreiber, “Biovis explorer:
A visual guide for biological data visualization techniques,” PLoS
One, vol. 12, no. 11, pp. 1-14, 11 2017.

1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524

1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576

LI AND YUAN: GOTREESCAPE: NAVIGATE AND EXPLORE THE TREE VISUALIZATION DESIGN SPACE 17

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

H. Guo, W. Li, and X. Yuan, “Transfer function map,” in Proc.
IEEE Pacific Visualization Symp., 2014, pp. 262-266.

Kwan-LiuMa, “Image graphs-a novel approach to visual data
exploration,” in Proc. IEEE Visualization, 1999, pp. 81-88.

Y. Wu, A. Xu, M. Chan, H. Qu, and P. Guo, “Palette-style volume
visualization,” in Proc. IEEE Int. Symp. Volume Graph., 2007,
pp- 33-40.

H. Guo, N. Mao, and X. Yuan, “WYSIWYG (what you see is what
you get) volume visualization,” IEEE Trans. Vis. Comput. Graph.,
vol. 17, no. 12, pp. 21062114, Dec. 2011.

F. Bolte and S. Bruckner, “Vis-a-Vis: Visual exploration of visuali-
zation source code evolution,” IEEE Trans. Vis. Comput. Graph.,
vol. 27, no. 7, pp. 3153-3167, Jul. 2021.

D. Moritz et al., “Formalizing visualization design knowledge as
constraints: Actionable and extensible models in draco,” IEEE
Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 438-448, Jan. 2019.

J. Hullman, S. M. Drucker, N. H. Riche, B. Lee, D. Fisher, and E.
Adar, “A deeper understanding of sequence in narrative visual-
ization,” IEEE Trans. Vis. Comput. Graph., vol. 19, no. 12, pp. 2406—
2415, Dec. 2013.

Y. Kim, K. Wongsuphasawat, J. Hullman, and J. Heer,
“Graphscape: A model for automated reasoning about visualiza-
tion similarity and sequencing,” in Proc. ACM Conf. Hum. Factors
Comput. Syst., 2017, pp. 2628-2638.

J. Tukey, Exploratory Data Analysis, vol. 2. Noida, UP, India: Pear-
son, 1977.

T.]J. Jankun-Kelly, K. Ma, and M. Gertz, “A model and framework
for visualization exploration,” IEEE Trans. Vis. Comput. Graph.,
vol. 13, no. 2, pp. 357-369, Mar./ Apr. 2007.

S. I. Fabrikant, D. R. Montello, and D. M. Mark, “The natural land-
scape metaphor in information visualization: The role of common-
sense geomorphology,” |. Amer. Soc. Informat. Sci. Technol., vol. 61,
no. 2, pp. 253-270, 2010.

M. Blades et al., “A cross-cultural study of young children’s mapping
abilities,” Trans. Inst. Brit. Geographers, vol. 23, no. 2, pp. 269-277,1998.
J. B. Kruskal, Multidimensional Scaling. Newbury Park, CA, USA:
Sage, 1978.

L. T. Jolliffe, Principal Component Analysis and Factor Analysis. Ber-
lin, Germany: Springer, 1986, pp. 115-128.

L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform manifold
approximation and projection for dimension reduction,” 2018,
arXiv:1802.03426.

L. Van der Maaten and G. Hinton, “Visualizing data using T-
SNE,” |. Mach. Learn. Res., vol. 9, no. 86, pp. 25792605, 2008.

D. P. Kingma and M. Welling, “An introduction to variational
autoencoders,” Found. Trends Mach. Learn., vol. 12, no. 4, pp. 307-392,
2019.

M. J. Kusner, B. Paige, and]. M. Herndndez-Lobato, “Grammar
variational autoencoder,” in Proc. Int. Conf. Mach. Learn., 2017,
pp- 1945-1954.

D. Kobak and P. Berens, “The art of using t-SNE for single-cell
transcriptomics,” Nat. Commun., vol. 10, no. 1, pp. 1-14, 2019.

[60]

[61]

[62]

[63]

[64]

[65]

R. Real and J. M. Vargas, “The probabilistic basis of jaccard’s index
of similarity,” Systematic Biol., vol. 45, no. 3, pp. 380-385, 1996.

F. Aurenhammer, “Voronoi diagrams—a survey of a fundamental
geometric data structure,” ACM Comput. Surv., vol. 23, no. 3,
pp- 345405, 1991.

D. Ceneda et al., “Characterizing guidance in visual analytics,”
IEEE Trans. Vis. Comput. Graph., vol. 23, no. 1, pp. 111-120,
Jan. 2017.

D. Auber, “Using strahler numbers for real time visual explora-
tion of huge graphs,” |. WSCG Int. Conf. Comput. Vis. Graph.,
vol. 10, no. 1/3, pp. 56-69, 2002.

D.]J.-L. Lee, J. Lee, T. Siddiqui, J. Kim, K. Karahalios, and A. Para-
meswaran, “You can’t always sketch what you want: Understand-
ing sensemaking in visual query systems,” IEEE Trans. Vis.
Comput. Graph., vol. 26, no. 1, pp. 1267-1277, Jan. 2020.

W. Meulemans, M. Sondag, and B. Speckmann, “A simple pipe-
line for coherent grid maps,” IEEE Trans. Vis. Comput. Graph.,
vol. 27, no. 2, pp. 1236-1246, Feb. 2021.

Guozheng Li received the PhD degree in com-
puter science from the school of EECS, Peking
University, in 2021. He is currently an Assistant
Professor with the School of Computer Science
and Technology, Beijing Institute of Technology,
Beijing. His major research interests include
information visualization, especially hierarchical
data visualization and visualization authoring.

Xiaoru Yuan (Senior Member, |IEEE) received
the BS degree in chemistry and the BA degree in
law from Peking University, in 1997 and 1998
respectively. In 2005 and 2006, the MS degree in
computer engineering and the PhD degree in
computer science with the University of Minne-
sota, Twin Cities. He is now a professor with
Peking University with the Laboratory of Machine
Perception (MOE). His primary research interests
lie in the field of scientific visualization, informa-
tion visualization and visual analytics with an

'

emphasis on large data visualization, high dimensional data visualiza-
tion, graph visualization and novel visualization user interface.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

1595
1596
1597
1598
1599
1600
1601
1602

1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615

1616
1617

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

