
1 GoTreeScape: Navigate and Explore the
2 Tree Visualization Design Space
3 Guozheng Li and Xiaoru Yuan , Senior Member, IEEE

4 Abstract—Declarative grammar is becoming an increasingly important technique for understanding visualization design spaces.

5 The GoTreeScape system presented in the paper allows users to navigate and explore the vast design space implied by GoTree, a

6 declarative grammar for visualizing tree structures. To provide an overview of the design space, GoTreeScape, which is based on an

7 encoder-decoder architecture, projects the tree visualizations onto a 2D landscape. Significantly, this landscape takes the relationships

8 between different design features into account. GoTreeScape also includes an exploratory framework that allows top-down, bottom-up,

9 and hybrid modes of exploration to support the inherently undirected nature of exploratory searches. Two case studies demonstrate the

10 diversity with which GoTreeScape expands the universe of designed tree visualizations for users. The source code associated with

11 GoTreeScape is available at https://github.com/bitvis2021/gotreescape.

12 Index Terms—Tree visualization, design space exploration, deep learning

Ç

13 1 INTRODUCTION

14 RESEARCHERS have proposedmanydeclarative grammars for
15 visualizations [1], [2], [3], [4], [5], [6]. These grammars build
16 design spaces by decomposing visualizations intomultiple dif-
17 ferent dimensions, each presentingdifferent properties of a lay-
18 out. Declarative grammars balance fine-grained design
19 controls with the burden of constructing tree visualizations by
20 specifying what to render. However, users may find it difficult
21 to navigate and explore the design space implied by a gram-
22 mar. Yet this is an important aspect of enlarging the set of
23 design possibilities that are known to visualization designers—
24 i.e., the known space—and also the solutions that the designers
25 can actively consider—i.e., the consideration space [7].
26 Within the realm of information visualization, visualiz-
27 ing tree structures is a basic and fundamental task, with the
28 literature offering hundreds of techniques for doing so [8].
29 Many software applications, programming libraries, and
30 other techniques allow users to author tree visualizations,
31 including general tools like D3 [9], Vega [2], and Tableau1

32as well as approaches tailored specifically for trees like
33GoTree/Tree Illustrator [4], [10] and the generative layout
34approach [11].

35However, much previous research on authoring tree vis-
36ualizations assumes that users have a clear target visualiza-
37tion in mind. Yet, in many cases, one’s design objectives
38may only be loosely-specified, with the user finding them-
39selves seeking a suitable solution from the design space. For
40example, a designer may want to visualize astronomical
41hierarchical data related to the solar system using a ring-
42shaped tree visualization, for a visual style consistent with
43the subject matter. Alternatively, perhaps the designer has a
44limited knowledge of all design options and does not know
45which tree visualizations might meet his/her requirements.
46S/he may not know whether a better tree visualization
47design exists nor how to choose the other design dimen-
48sions needed to reach an appropriate final solution. Yet, in
49general, supporting the exploratory design [12] of tree visu-
50alizations in such application scenarios is still an under-
51explored problem.

52That said, there have been a few studies on exploratory
53design as well as exploratory visual analysis (EVA). When
54conducting an EVA, analysts have a vague hypothesis or an
55ill-defined task in mind. Similarly, exploratory design begins
56with loosely-specified design goals and proceeds in an
57opportunistic and serendipitous manner. These studies on
58exploratory design [13], [14], [15], [16], [17] and EVA [18],
59[19], [20], [21] mainly offer ways to explore a parametric
60space. Additionally, studies on EVA focus on changing the
61underlying data variables, that is data variations, while
62exploratory design generally involves tweaking the design
63parameters, i.e., design variations. What these studies do not
64address is how to support the exploratory design of tree vis-
65ualizations. Overcoming this problem involves at least two
66challenges:

67The first challenge is providing an overview of the tree
68visualization design space. This space is often extremely
69large, encoding both topological and node attributes with

� Guozheng Li was with the School of AI, PekingUniversity, Beijing 100871,
China. He is now with the School of Computer Science and Technology,
Beijing Institute of Technology, Beijing 100811, China.
E-mail: guozhg.li@gmail.com.

� Xiaoru Yuan is with the Laboratory of Machine Perception (Ministry of
Education), School of AI, Peking University and National Engineering
Laboratory for Big Data Analysis and Application, Peking University, Bei-
jing 100871, China. E-mail: xiaoru.yuan@pku.edu.cn.

Manuscript received 3 November 2021; revised 21 September 2022; accepted 7
October 2022. Date of publication 0 2022; date of current version 0 2022.
This work was supported in part by the National Key Research and Develop-
ment Program of China under Grant 2021YFB3301502, in part by NSFC under
Grant 61872013, and in part by the Beijing Institute of Technology Research
Fund Program for Young Scholars.
(Corresponding author: Xiaoru Yuan.)
Recommended for acceptance by S.G. Kobourov.
This article has supplementary downloadable material available at https://doi.
org/10.1109/TVCG.2022.3215070, provided by the authors.
Digital Object Identifier no. 10.1109/TVCG.2022.3215070

1. https://www.tableau.com/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

1077-2626 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6663-6712
https://orcid.org/0000-0001-6663-6712
https://orcid.org/0000-0001-6663-6712
https://orcid.org/0000-0001-6663-6712
https://orcid.org/0000-0001-6663-6712
https://orcid.org/0000-0002-7233-980X
https://orcid.org/0000-0002-7233-980X
https://orcid.org/0000-0002-7233-980X
https://orcid.org/0000-0002-7233-980X
https://orcid.org/0000-0002-7233-980X
https://github.com/bitvis2021/gotreescape
mailto:guozhg.li@gmail.com
mailto:xiaoru.yuan@pku.edu.cn
https://doi.org/10.1109/TVCG.2022.3215070
https://doi.org/10.1109/TVCG.2022.3215070

70 many visual channels. Ways of quantifying the similarity
71 between different tree visualizations in a way that matches
72 human perception are not necessarily obvious. For example,
73 one could generate two congruent tree visualizations by
74 swapping the layout-related design dimensions along the x
75 and y-axes. Although the “edit distance” between these two
76 visualizations’ grammars may be large (because many
77 design dimensions are different), the results would like be
78 perceived as being extremely similar. Moreover, design
79 dimensions will have different impacts on the visualization
80 results. For example, changing a Cartesian coordinate sys-
81 tem to a polar coordinate system influences both the relative
82 positions and the shapes of nodes in the tree visualization,
83 whereas changing the node type from circle to triangle only
84 influences the shape of the node.
85 The second challenge involves how to provide a flexible
86 approach to exploratory design, where users have the
87 option to start from a loosely-specified goal and make sub-
88 sequent decisions to identify a concrete solution. In some
89 cases, the user might begin with a tentative design as a start-
90 ing point and wish to confirm if better visualizations are
91 available in the design space. In other cases, the user might
92 begin with queries that partially restrict the set of possible
93 solutions, or may even begin with no preconceived design
94 and wish to freely explore. The decision-making process of
95 the user can also be highly variable. It may be directed
96 toward a clear goal; it may involve determining design
97 choices for certain dimensions; or it may involve backtrack-
98 ing and starting over due to some new inspiration.
99 To address these challenges, we propose GoTreeScape, a

100 system providing an overview of a landScape of tree visual-
101 izations described by GoTree [4]. GoTreeScape allows users
102 to control their exploratory design process while supporting
103 wide variations in requirements. To project the set of possi-
104 ble tree visualizations onto a two-dimensional space,
105 GoTreeScape uses a variational autoencoder (VAE) to map
106 62340 tree visualizations (as described by GoTree) onto a
107 latent space, in which nearby points decode to similar tree
108 visualizations. This training integrates domain expertise
109 about what makes two tree visualizations look similar and
110 also which GoTree design dimensions have a more signifi-
111 cant impact on the tree visualization results than others
112 (Section 4.2.2). To avoid excessive clutter, GoTreeScape dis-
113 plays landmarks in the design space, which are representa-
114 tive tree visualizations, and shows a density-based contour
115 indicating other possible design choices rather than all dis-
116 crete points. To enable flexible exploratory design, GoTree-
117 Scape incorporates an exploratory framework supporting
118 top-down, bottom-up, and hybrid exploration modes. In
119 addition, it allows for a data-oriented exploration of the
120 design space where users upload their hierarchical data and
121 can then generate all tree visualization results based on
122 those data. Driven by the considerations distilled from exist-
123 ing studies on exploratory design and EVA [18], [19], [20],
124 GoTreeScape visualizes the tree visualization design space
125 through a landscape metaphor and supports navigation
126 and exploration by users.
127 To evaluate the usability of GoTreeScape, we had one
128 visualization designer and one visualization researcher
129 apply the system to their own scenario of tree visualization
130 design. These two case studies demonstrate the system’s

131utility. The results not only show that GoTreeScape allows
132users to find desirable solutions but also that GoTreeScape
133expands the diversity of user-designed tree visualizations.
134Our contributions include: (1) A novel approach to con-
135structing a tree visualization design space as a holistic land-
136scape; (2) An exploratory framework supporting varying
137user requirements and scenarios; and (3) A prototype sys-
138tem for navigating and exploring tree visualization design
139spaces.

1402 RELATED WORK

141This section reviews the literature on tree visualizations,
142and, particularly, tree visualization frameworks, as well as
143the literature on exploring design spaces.

1442.1 Tree Visualization

145Tree visualizations can be categorized into implicit and
146explicit techniques depending on how the parent-child rela-
147tions in hierarchical data are visually represented. Explicit
148techniques emphasize topological structures by explicitly
149encoding parent-child relationships into the tree’s visual
150elements, e.g., arcs [22], straight lines [23], and curves [24].
151By contrast, implicit techniques are potentially more space-
152efficient because they encode the parent-child relations into
153relative positions between the nodes, e.g., containment [25]
154and adjacency [26]. Additionally, hybrid techniques that
155combine the advantages of two or more approaches have
156also been proposed [27]. Beyond novel tree visualizations,
157researchers have also proposed various ways of capturing
158and describing the vast design spaces in a unified way
159through graphical building blocks. Schulz et al. [8], for exam-
160ple, are collecting tree visualizations on treevis.net, with
161over 330 assembled to date. Exceeding the boundaries of a
162collection, treevis.net also classifies tree visualizations
163against three design criteria, namely dimensionality (2D,
1643D, and hybrid), edge representation (explicit, implicit, and
165hybrid), and node alignment (radial, axis-parallel, or free).
166Li et al. [28] subsequently extended these three design crite-
167ria into 12 design features, and also constructed a phyloge-
168netic tree to show evolutionary relationships. Similar to
169GoTreeScape, this study also supports exploring tree visual-
170ization designs. However, the phylogenetic tree comprises
171just 35 tree visualizations, while GoTreeScape allows users
172to explore and navigate a vast design space implied by a
173fine-grained declarative grammar.
174Although useful for classifying design choices, the above
175design dimensions are not fine-grained enough to generate
176concrete tree visualizations. To overcome this problem, some
177researchers have looked to categorize all possible tree visual-
178izations into subclasses. Others have proposed descriptive
179approaches to support the fine-grained specifications. For
180example, Schulz and Hadlak [29] proposed an approach to
181exploration based on presets that allows users to construct
182new designs by blending several existing visual representa-
183tions. They feature five design dimensions: explicit/implicit,
184structure/attribute, aligned/cascaded, inclusion/adjacency,
185axis-parallel/radial and exemplify preset-based method on
186tree visualizations. As shown in Fig. 1, blending a radial node-
187link layout with a nested squarified treemap produces a nested
188squarified pietree. In terms of implicit tree visualizations,

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

189 Schulz et al. [30] divide the design space along four dimen-
190 sions: dimensionality, node representation, edge representa-
191 tion, and layout. With layout containing more fine-grained
192 parameters, such as subdivision and packing. Li et al. devel-
193 oped GoTree [4], a declarative grammar for tree visualiza-
194 tions, and Tree Illustrator [10], which is an interactive
195 authoring tool for further reducing the burden of construct-
196 ing visualizations imposed by GoTree. Spurred on by the
197 capabilities of GoTree, we leveraged this application to con-
198 struct the tree visualization design space for GoTreeScape.
199 Beyond graphical building blocks, such as visual elements
200 and properties, some tree visualization frameworks use func-
201 tional building blocks, i.e., operators. The generative layout
202 approach [11] involves a construction pipeline with six
203 stages for constructing implicit and explicit tree visualiza-
204 tions. The six stages include initialization, traversal, pre-pro-
205 cess, pre-layout, allocate, and post-layout. Further, a set of
206 operators is defined for each stage. Fig. 1 shows the step-
207 wise creation process of three tree visualizations based on
208 these operators. Many operator-based tree visualization
209 frameworks also focus on the subcategory of the tree visual-
210 izations, especially for space-filling tree visualization lay-
211 outs. For instance, Baudel and Broeksema [31] use five
212 dimensions, namely, order, size, chunk, recurse, and phrase,
213 to drive space-filling layouts. Existing studies [32], [33] also
214 use operators to configure a hierarchical layout to visualize
215 multivariate data.
216 Hence, overall, the current literature organizes the tree
217 visualization design space and supports the rapid prototyp-
218 ing of tree visualizations, but it does not allow users to effec-
219 tively perform open-ended explorations of the design space
220 when the user’s targets are not well-defined.

221 2.2 Design Space Exploration

222 The design space extracts preliminary building blocks from
223 existing visualizations and builds a space for visualizing pos-
224 sible designs, both existing and novel, by assembling all possi-
225 ble combinations of the building blocks. Visualization design
226 spaces can help guide users in the design process by support-
227 ing them to understand single visualizations and their rela-
228 tionships. [34], [35], [36]. For example, by examining existing
229 implicit tree visualizations, Schulz, Hadlak, and Schu-
230 mann [30] identified four independent building blocks:
231 dimensionality, node representation, edge representation,
232 and layout. These serve as axes for constructing the design
233 space. Card et al. [34] structure the visualization design space
234 by treating the data properties as an important aspect of
235 representation. By contrast, Tory and M€oller [37] provide a
236 high-level taxonomy for a discrete or continuous visualization

237design, based on different display attributes. Design spaces
238for visualizing tree subcategories have also been structured,
239including composed visualizations [35], [38], timeline-based
240storytelling visualizations [39], biological data visualiza-
241tions [40], and the tree visualizations explained in Section 2.1.
242Volume rendering results are determined by various
243design dimensions, such as transfer functions and view-
244points. To search for the volume rendering results that meet
245one’s analysis requirements, users need to explore a design
246space. Some provide an overview by calculating the differ-
247ences between the visualization results and arranging them
248based on MDS projections [14], [41]. More specifically,
249Design Galleries [14] defines a distance metric within a
250parameter-based high-dimensional space, to ensure that the
251options displayed in the gallery differ from each other. In
252the transfer function map approach [41], a 2D representa-
253tion of the transfer function feature space is built and the
254interpolations between the individual volume rendering
255results are explored. To organize the visual process of
256exploration for discovery, comparison, and analysis, Jan-
257kun-Kelly and Ma [13] propose solutions based on
258graphs [42] and a spreadsheet interface [13] so as to orga-
259nize the volume rendering results. Additionally, tools like a
260palette-style volume visualization interface [43] and the
261intuitive WYSIWYG interactions [44] have been proposed
262to make the exploration process more user-friendly. What
263all these methods have in common is that they are designed
264to find a suitable parameter set for a given volume dataset.
265By contrast, Bolte and Bruckner [45] propose Vis-a-Vis to
266analyze the effect of one parameter set on different datasets
267with respect to both the graphical output and the source
268code. However, like volume rendering, generating volumet-
269ric geometry also involves a large set of parameters. Hence,
270Cupid [17] combines the abstract parameter space with the
271resulting geometric shapes in composite visualizations to
272help users understand the parameter sensitivities and iden-
273tify invalid parameter settings.
274Another scenario of design space exploration considers
275chart construction for multivariate and tabular data. The
276vast combinations of data variables, data transformations,
277and visual encodings can result in a large design space.
278Hence, existing studies focus on recommending possible
279visualizations, deriving insights from prior investigations,
280and guiding further explorations. To recommend visualiza-
281tions, Voyager [19] allows users to choose the recommended
282charts according to statistical and perceptual measures in a
283mixed-initiative manner. Voyager2 [18] extends Voyager
284with wildcards and related views to allow open-ended
285exploration and targeted question answering. All these

Fig. 1. Three typical tree visualizations and their step-wise creation process. A radial node-link layout (a) is an explicit tree visualization. A nested
squarified treemap (b) and a nested squarified pietree (c) are both implicit tree visualizations. Users can construct (c) by setting (a) and (b) as presets
during the exploration phase of the visualization design process.

LI ANDYUAN: GOTREESCAPE: NAVIGATE AND EXPLORE THE TREE VISUALIZATION DESIGN SPACE 3

286 methods require users to actively participate to find appro-
287 priate visualizations, but visualization recommendations
288 are another way of further improving efficiency. One typical
289 example is Draco [46], which uses an optimization tech-
290 nique to find the best visual mapping approaches. Visual-
291 izations are specified based on answer set programming
292 and modeling the knowledge from visualization designs as
293 a collection of constraints.
294 Moreover, narrative visualizations require users to
295 choose an order in which to present multiple visualizations
296 instead of presenting the visualizations as independent
297 individuals. In this vein, Hullman et al. [47] proposed a con-
298 ceptual framework for identifying possible transitions in a
299 visualization set. Here, the cost of transitions is optimized
300 from the audience’s perspective. Kim et al. proposed Graph-
301 Scape [48], which builds a directed graph model of the visu-
302 alization design space. GoTreeScape supports automated
303 reasoning about the similarity and ordering of visualiza-
304 tions. Understanding the prior explorations is equally
305 important for deriving insights and guiding further explora-
306 tion. Chart Constellation [21] summarizes user-generated
307 charts in a 2D space based on the similarities of four ele-
308 ments: chart encoding, keyword tagging, dimensional inter-
309 section, and aggregated pairwise. ChartSeer [20] includes a
310 grammar-based encoder-decoder technique that provides a
311 visual summary. However, it emphasizes informing users
312 of the current EVA [49] state based on the charts created. It
313 also decodes charts from the projection results for further
314 exploration based on user interactions. In contrast to Chart-
315 Seer, GoTreeScape defines a weighted objective function
316 based on the characteristics of the design features. In addi-
317 tion, it constructs an overview of the tree visualization
318 design space implied by a fine-grained declarative gram-
319 mar, and includes an exploratory framework to support
320 user’s design process.
321 It is worth noting that all of the above research studies
322 that consider statistical charts are based on Vega-Lite [1], a
323 grammar of graphics capable of expressing a variety of sta-
324 tistical charts. Significant differences exist between GoTree
325 and Vega-Lite in terms of the expressiveness of tree visual-
326 izations. For example, at the time of this writing, Vega-Lite
327 does support the authoring of tree visualizations. GoTree,
328 however, is a declarative grammar designed specifically for
329 visualizing tree structures that supports a wide range of
330 tree visualizations.
331 Compared to existing works, GoTreeScape’s point of dif-
332 ference is that it focuses on the design space of tree visual-
333 izations, helping users with the exploratory phase of their
334 visualization design.

335 3 OVERVIEW OF GOTREESCAPE

336 This section discusses the motivating design considerations
337 of GoTreeScape, and then introduces an overview of our
338 methods at a high abstraction level. The technical details are
339 provided in Section 4.

340 3.1 Design Consideration

341 In the realm of tree visualization, the purpose of a declara-
342 tive grammar is to define a design space in a fine-grained
343 manner. Within this design space, tree visualizations can be

344regarded as combinations of arbitrary attributes from all
345design features. For example, GoTree [4] considers 49
346design features. However, given combinatorial explosion,
347such a design space will contain an enormous number of
348visualizations, and browsing them all would imposes a sig-
349nificant cognitive burden on users. Thus, to help designers
350explore all possible options, we developed a set of consider-
351ations informed by the existing principles of exploratory
352data analysis [49], [50], visualization recommendation [20],
353and mixed-initiative systems [18], [19]. Moreover, given
354that not all principles from the above studies apply to tree
355visualization and not all principles cover the full gamut of
356what is needed in a tree visualization exploration schema,
357we also worked closely with visualization designers to
358refine these design considerations. The final set is summa-
359rized as follows:
360D1: Show Design Variation Rather Than Data Variation.
361Design variation refers to the different forms of visually
362encoding of data, while data variation focuses on the differ-
363ent variables and transformations. In general, exploratory
364data analysis [18], [19] emphasizes data variation over
365design variation, while design space exploration pays more
366attention to design variation. Empirically, visualization
367designers always determine overall visual representations
368at first. For example, they decide whether the visual repre-
369sentations are consistent with the topic of their designs. The
370next step is then the visual encoding of the dataset. Many
371design features in a visualization grammar, e.g., node width/
372height, have several variations relating to the dataset. The
373proposed GoTreeScape collapses this space of options to a
374single tree visualization with default values.
375D2: Prefer Fine-Tuning to Exhaustive Enumeration. Despite
376eliminating the data variation, enumerating the design fea-
377tures still produces a combinatorial explosion. However,
378not all design attributes have a significant impact on the
379visualization results; some only have a minor impact on the
380tree visualization results, such as padding between the ele-
381ments. Other features are numerical, such as the central angle
382of a polar coordinate system, while others still are categori-
383cal with symmetrical options, e.g., the alignment between a
384parent and child can be either left or right. Further, some
385attribute combinations might be invalid with hierarchical
386data. Thus, to reduce combinatorial explosion, GoTreeScape
387rationalizes some features and their combinations and,
388instead of exhaustively enumerating every option, offers
389users options to fine-tune their selected visualization.
390D3: Provide an Overview of the Tree Visualization Design
391Space. During exploratory design, users must be kept aware
392of what has been comprehensively explored and unex-
393plored, and they must continuously determine subsequent
394exploration directions. An overview of the tree visualization
395design space provides a visual summary of this and present
396relationships among tree visualizations. Here, nearby points
397can be decoded into similar discrete tree visualizations in
398harmony with human cognition. In this way, such a visual
399summary benefits the exploratory design process. GoTree-
400Scape considers the relationships between the design fea-
401tures and builds a landscape by employing a VAE technique
402based on GoTree’s grammars in JSON format.
403D4: Encourage Interactive Controls to Drive Exploration.
404Both exploratory design [12] and exploratory data analysis

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

405 are open-ended iterative processes. In the beginning, the
406 user’s design goals or analysis tasks may be vague or only
407 loosely specified but, gradually and with exploration, they
408 should become more and more concrete; they might even
409 change completely. During their explorations, users will
410 make decisions, such as determining which direction to
411 pursue further, by assessing their current situation by using
412 their own domain knowledge. To encourage such a
413 dynamic exploration process, the system should always
414 provide users with the interactive controls to indicate their
415 intent and to drive their exploration. To this end, GoTree-
416 Scape provides users with density-based contours and land-
417 marks as guides and offers an exploration framework
418 consisting of top-down, bottom-up, and hybrid modes to
419 flexibly adapt to a large range of user requirements.

420 3.2 System Overview

421 Guided by the above considerations, we introduce GoTree-
422 Scape. GoTreeScape comprises three parts: generating the
423 collection of the tree visualizations; constructing the the
424 design space landscape; and the framework for exploring.
425 Fig. 2 illustrates the overall architecture of the proposed
426 GoTreeScape.
427 Generating a collection of tree visualizations is the basis
428 of navigating and exploring a design space. The visualiza-
429 tion set generation is based on GoTree, which is a declara-
430 tive grammar of tree visualizations. Compared to GoTree,
431 Vega-Lite supports a wide range of statistical charts but, at
432 the time of writing, cannot be used to author tree visualiza-
433 tions. Traversing all the combinations of the design features
434 defined in GoTree would result in an enormous number of
435 possible tree visualizations in the design space. Therefore,
436 GoTreeScape simplifies the design features in three aspects
437 rather than generating all possibilities. (1) Only combina-
438 tions of the design features related to design variations are
439 traversed (D1); (2) Design features that have a small impact
440 on the final tree visualization results are removed and (3)
441 Invalid combinations of the design features are removed
442 based on domain expertise (D2).
443 Constructing a design space landscape provides userswith
444 an overview of the generated tree visualization collection.
445 However, the similarities between the tree visualizations can

446often be difficult to quantify due to the various design fea-
447tures of the tree visualizations. GoTree decomposes tree
448visualizations into design features, and so GoTreeScape is
449based on an encoder-decoder architecture that computes
450a vector representation for each tree visualization. The
451decoder computes representations from GoTree in 2D
452space with a customized objective that considers the char-
453acteristics of the tree’s layout (D3).
454The exploratory framework allows users to explore and
455navigate based on the constructed landscape of the tree
456visualization design space (D4). It consists of top-down, bot-
457tom-up, and hybrid modes to account for the varying start-
458ing points of each user along with their design decisions
459during exploration. In top-down mode, users do not have
460any requirements for their target design, or perhaps they
461only have partial specifications. Partial specifications allow
462users to isolate a portion of the landscape from the begin-
463ning. As they explore, the correct design features are gradu-
464ally determined with the help of landmarks. In bottom-up
465exploratory mode, users have a preliminary tree visualiza-
466tion design but want to explore some other alternatives in
467the design space. GoTreeScape will therefore recommend
468visualizations similar to their starting design and also at dif-
469ferent levels of zoom. Finally, in hybrid mode, users can
470flexibly switch between top-down and bottom-up modes.
471For example, users can decide on a tree visualization during
472a top-down explorations and then use it as a starting point
473for a bottom-up exploration.
474Based on this exploratory framework, we designed a pro-
475totype system to guide users during their exploratory pro-
476cess. The prototype includes density-based contours to
477inform users of what could be further explored, and also
478representative landmarks to inform users of the various
479design features of the tree visualizations. The system also
480provides a range of interaction options for users to indicate
481their intentions.

4824 GOTREESCAPE SYSTEM

483This section presents the technical details of each part of the
484GoTreeScape architecture. Consistent with the system over-
485view explained in Section 3.2, the following subsections
486introduce how the visualization set is generated, how the

Fig. 2. The pipeline of GoTreeScape comprises three modules; (1) tree visualization set generation, (2) landscape construction, and (3) design space
navigation and exploration, which is driven by a framework with top-down, bottom-up and hybrid modes.

LI ANDYUAN: GOTREESCAPE: NAVIGATE AND EXPLORE THE TREE VISUALIZATION DESIGN SPACE 5

487 landscape is constructed, and the data-oriented exploratory
488 framework. Note that the landscape is constructed indepen-
489 dently of the hierarchical data, but the exploratory design
490 framework takes the characteristics of the hierarchical data
491 into consideration. In the last part of this section, we also
492 discuss the design of the prototype.

493 4.1 Tree Visualization Set Generation

494 GoTreeScape uses GoTree to represent and manipulate tree
495 visualizations. GoTree divides its 49 design features into
496 three categories: visual elements, the coordinate system, and
497 the layout. Each category consists of multiple fine-grained
498 design features with categorical and numerical attribute val-
499 ues. For example, the attribute values for NodeShape and
500 LinkShape in the visual element category are categorical,
501 while the value of the CentralAngle in the polar coordinate
502 system (within the coordinate system category) is numerical.
503 Details of each design feature can be found in the supple-
504 mental material, which can be found on the Computer Soci-
505 ety Digital Library at http://doi.ieeecomputersociety.org/
506 10.1109/TVCG.2022.3215070. Traversing all design feature
507 attributes will result in a massive collection of tree visualiza-
508 tions. So, in GoTreeScape, the visualization set that is gener-
509 ated is simplified against three criteria.
510 Design Features. GoTreeScape emphasizes design varia-
511 tions rather than data variations (D1). As a result, GoTree-
512 Scape does not traverse any design features that do not lead
513 to new designs when generating the collection of tree visu-
514 alizations. The eliminated design features fall into three
515 main categories. The features in the first category, e.g.,Node-
516 Width, are only related to the attributes of hierarchical data
517 items. The second category contains features that only have
518 a minor impact on the design, e.g., Margin and Padding
519 between visual elements. The third category is independent
520 of the visual representations, e.g., the position of NodeLabel.
521 Design Feature Attributes. In addition to the design fea-
522 tures, the number of feature attributes is also a significant
523 factor that determines the size of the tree visualization col-
524 lection. Hence, GoTreeScape also makes the following two
525 simplifications: (1) Any feature attributes that result in sym-
526 metrical tree visualizations are simplified. For example, set-
527 ting the alignment of the parent-child relationship to “left”
528 or “right” results in symmetrical tree visualizations. There-
529 fore, GoTreeScape only takes one option from the symmet-
530 ric feature values in the collection and leaves the other to a
531 fine-tuning process. (2) Only representative discrete values
532 are taken for the numerical feature attributes. For example,
533 in GoTree, the CentralAngle of the polar coordinate system
534 falls between 0 and 1. Zero indicates that the central angle
535 of the polar coordinate system is 0�, and one indicates that
536 the central angle is 360�. We set the central angles to 0.25
537 (90�), 0.5 (180�), 0.75 (270�), and 1 (360�) when generating
538 the tree visualization collection.
539 Combinations of Design Feature Attributes. Some design
540 feature combinations lead to invalid visual representations
541 with hierarchical data due to severe overlaps with the visual
542 elements or conflicts between the design features. Two typi-
543 cal examples follow: (1) When the relative positions
544 between siblings along the x-axis and y-axis are both aligned,
545 the nodes in the visualization overlap significantly making
546 it difficult to differentiate them. (2) Some visual elements,

547such as, ellipses and triangles can conflict with the features
548of the layout and coordinate system. That is, the position
549and occupied space of the visual elements are calculated
550based on the layout and coordinate system, but these nodes
551cannot be appropriately visualized in the occupied space.
552The design space can be represented using a hierarchical
553structure. The above three simplifications over the whole
554design space are shown in Fig. 7a, and the remaining design
555features and attributes are shown in Fig. 7b. After simplifi-
556cation, 62,340 tree visualizations remain in the collection.
557Details of the simplified configurations are given in the sup-
558plemental materials, available online.

5594.2 Landscape Construction

560To provide an overview of design space that shows a visual
561summary of the relationships between tree visualizations,
562an unsupervised encoder-decoder framework converts the
563tree visualizations to and from embedding vectors in the
564latent space. Specifically, the encoder maps the input sam-
565ples to vectors in a low dimensional latent space, and then
566the decoder restores the vectors to the original space. Essen-
567tially, these embeddings constitute a representation of the
568target tree visualization design space.
569The similarities between the tree visualizations can easily
570be measured based on the euclidean distance between the
571vectors of these representations. Furthermore, the relation-
572ships, clusters, and distribution of the tree visualization
573design space can be also derived from this latent space. To
574improve the readability of the landscape, the latent space is
575eventually reduced to a two-dimensional euclidean space,
576and landmarks are added to the landscape to guide the
577user’s exploration.
578Our insights into the landscape design, which serve as
579the domain knowledge for the model design, are discussed
580next. We then discuss the VAE, highlighting its advantages
581over other dimensionality reduction techniques. Finally, we
582present more details on how the GoTree-based landscape is
583constructed.

5844.2.1 Landscape Design Justification

585One of the jobs of the overview is to help users learn the rel-
586ative relationships between visualizations. One straightfor-
587ward approach to accomplishing this goal is to directly
588display all tree visualization items and to use the distances
589between the items to encode their similarities. However, the
590underlying visualization set for constructing such an over-
591view is too large for such a direct solution. Showing all visu-
592alizations in the collection would severely overwhelm users.
593Note that visualization design space exploration is different
594from recommendation, which is able to get a priority of dif-
595ferent visualizations. For example, Draco [46] sorts the visu-
596alizations according to some criteria and shows them in a
597simple list. However, showing all tree visualizations with-
598out priority in a simple list is likely not optimal because
599users would need to check each tree visualization, making
600the exploration process tedious and time-consuming. To
601solve these challenges, we have turned to the visual and
602interactive properties of a landscape as a metaphor. More
603specifically, image looking at a map from a zoomed-out
604point of view where only representative landmarks, such as

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

http://doi.ieeecomputersociety.org/10.1109/TVCG.2022.3215070
http://doi.ieeecomputersociety.org/10.1109/TVCG.2022.3215070

605 countries and their capitals, are visible. Then zoom in, and
606 the inner states of a country begin to appear. In addition,
607 when the user selects a specific target of interest, more tar-
608 gets belonging to the same category will be appear on the
609 landscape. We propose an exploration tool that allows users
610 to navigate the collection of tree visualizations in a similar
611 way. A landscape was chosen as a visual metaphor for two
612 reasons. First, the landscape metaphor was one of the first
613 methods used by the information visualization community
614 to visualize rich information that is not inherently spa-
615 tial [51]. Second, existing studies have found that everyone
616 intuitively understands landscapes [51] and generally learns
617 to read maps in pre-school [52]. In addition, solving map-
618 based analysis tasks requires little training. The remainder
619 of this section introduces the specific techniques for build-
620 ing GoTreeScape. These techniques are invisible to ordinary
621 users; all users need to do is to interact with the landscape
622 overview.

623 4.2.2 Insight on Design Feature

624 This section explains our insights into the design features,
625 which guided us in determining the weights of each feature
626 when training the autoencoder. The model is used to map
627 the tree visualizations to latent vectors. The design features
628 in GoTree determine tree visualization results. However, by
629 investigating the generated tree visualization collection, as
630 explained in Section 4.1, we found that computing similari-
631 ties between the tree visualizations based on euclidean dis-
632 tance was not consistent with human perception for the
633 following two reasons:
634 First, different design features have a different magni-
635 tude of impact on the tree visualization results. In fact, we
636 classified design features into four different categories
637 according to the impact they have on the results. The design
638 features associated with the coordinate system have the
639 most significant impact. As shown in Fig. 3(6), changing the
640 coordinate system attribute value from Cartesian to the polar
641 influences the layouts (relative positions) of the tree visual-
642 izations. Since position is the most efficient visual channel
643 for encoding data, layout-related design features have the
644 second-most significant impact. As shown in Fig. 3(1)-(4),
645 layout-related design features influence the tree visualiza-
646 tion layout, including relative position and height/width of
647 the visual elements. The third category consists of visual

648element-related design features (Fig. 3(5)). Features in this
649category only change the visual elements. In the fourth cate-
650gory, the design features only slightly adjust the layout.
651These features include attributes such as margins and pad-
652dings between the nodes.
653Second, the similarities between tree visualizations do
654not necessarily correlate to the number of design features
655that have changed. GoTree is a declarative grammar defined
656along axes, which is a common way to design visualization
657grammars, such as ATOM [3] and Vega-lite [2]. However,
658with an axis-decomposed declarative grammar, the layout-
659related design features of two center-symmetric tree visual-
660izations may be completely different. Fig. 3 shows an exam-
661ple. Starting from the icicle plot tree visualization in (a), the
662parent-child relation along the x axis is include and the sib-
663ling relation is flatten; along the y axis, the parent-child rela-
664tion is juxtapose and the sibling relation is align). However,
665after swapping the design features along the x and y axis
666(Steps 1-4), the tree visualization changes to that shown in
667(e). Both (a) and (e) are icicle plot tree visualizations only
668with different orientations. However, the edit distance in
669terms of the design features of the two grammars is great.
670Based on the above insights, we restructured the design
671space as shown in Fig. 7c, reordering the design features
672according to the level of impact they have on the tree visual-
673izations. Further, the layout-related design features are
674grouped along the same axis. The weights of these design
675features decrease from top to bottom and are encoded in a
676vector W that is used to train an autoencoder, as described
677in Section 4.2.4.

6784.2.3 VAE-Based Dimensionality Reduction

679Landscape construction can be modeled as a dimensionality
680reduction task, which maps the tree visualization design
681space from a discrete space into a low-dimensional euclidean
682space. This section introduces the basis of the VAE,
683highlighting its advantages over other dimensionality reduc-
684tion techniques. Unlike other traditional dimensionality
685reduction techniques, e.g., MDS [53], PCA [54], UMAP [55]
686and t-SNE [56], VAEs [57] are a type of generative model
687with a strong ability to represent data. VAEs assume that the
688input data has some sort of underlying probability distribu-
689tion, such as a Gaussian distribution, and it projects data into
690the latent space in a generativemodelingway.

Fig. 3. The six tree visualizations. (b)-(g) in the first row are based on (a) an icicle plot by changing the layout-related design features (arrows in
orange), the visual element-related design features (arrows in blue), and the coordinate system-related design features (arrows in brown). (1)
Changing parent-child relation along the x axis to juxtapose. (2) Changing the parent-child relation along the y axis to align. (3) Changing the sibling
relation along the y axis to flatten. (4) Changing the sibling relation along the x axis to align. (5) Changing the visual elements to triangle. (6) Changing
coordinate system to polar. The visualizations in the second line are based on the results in the first row accordingly.

LI ANDYUAN: GOTREESCAPE: NAVIGATE AND EXPLORE THE TREE VISUALIZATION DESIGN SPACE 7

691 Based on an encoder-decoder framework, the VAE uses
692 variational inference to derive an evidence lower bound
693 (ELBO) as the objective [57] given by:

log pðxiÞ � E�quðzjxiÞ½log pfðxijzÞ� �DKLðquðzjxiÞjjpðzÞÞ
(1)

695695

696

697 Note that the right-hand side of Eq. (1) is the core of the
698 VAE, where quðzjxiÞ is the encoder that maps xi into the
699 latent variable z, and pfðxijzÞ is the decoder that reconstruct
700 z from the input xi. The first term in the ELBO represents
701 the reconstruction log-likelihood, while the Kullback-Lei-
702 bler (KL) term ensures the learned distribution. quðzjxiÞ is
703 similar to the true prior distribution pðzÞ. Notably, the KL
704 term reveals a fundamentally unique property that sepa-
705 rates it from an ordinary autoencoder, that is, that the VAE
706 not only reconstructs the inputs, it also learns a more coher-
707 ent latent space in which nearby points decode to similar
708 discrete outputs.
709 A Gaussian representation was chosen for the latent
710 prior pðzÞ and the approximate posterior quðzjxiÞ empiri-
711 cally. Finally, the VAE loss function is derived by consider-
712 ing the negative of the ELBO:

L ¼ DKLðquðzjxiÞjjN ð0; 1ÞÞ � E�quðzjxiÞ½log pfðxijzÞ� (2)
714714

715 where the optimal parameters ðu�;f�Þ are derived by mini-
716 mizing L:

ðu�;f�Þ ¼ argminu;fLðu;fÞ (3)718718

719

720 Thus, the GoTree-based landscape is constructed by cus-
721 tomizing the neural network structure and the objective
722 based on this VAE methodology.

723 4.2.4 GoTree-based Landscape Construction

724 The landscape construction approach is based on the declar-
725 ative grammar of the tree visualizations. Generally, visuali-
726 zation images in bitmap format are the final results that
727 users directly perceive. Therefore, the smaller the pixel-
728 based distance between two bitmap images, the more simi-
729 lar the corresponding tree visualization results should be.
730 However, after testing the landscape construction method
731 based on tree visualization images, we found that the
732 GoTree grammar captures inherent visualization features
733 like radial versus angular or include versus juxtapose, and
734 these would have to be tediously extracted from the result-
735 ing bitmaps using computer vision technique. Therefore,
736 the landscape construction based on these grammatic
737 expressions aligns by design with these features, breaking
738 down the landscape into coherent and sensible regions
739 implied by them – e.g., a region of radial visualizations ver-
740 sus a region of angular visualizations. Detailed results and
741 explanations can be found in the supplemental material,
742 available online.
743 Compared to the bitmap images, GoTree, which decom-
744 poses tree visualizations into design features, is a better
745 input format and means that domain knowledge can be
746 injected into landscape construction results. To input the
747 grammar into the model, we used context-free grammar
748 (CFG) inspired by the grammar-based variational autoen-
749 coder (GVAE) [58]. This linearizes the GoTree’s grammar

750by mapping it into a set of rules, as shown in the dotted box
751in Fig. 2. The input/output of the encoder-decoder network
752is a set of one-hot feature vectors representing the rules
753extracted from CFG rules of the tree visualizations. Since
754the different tree visualizations do not have an identical
755number of rules, we carefully designed the feature vector to
756ensure that different tree visualizations share the same
757structure. As shown in Fig. 4, the length of its first dimen-
758sion is the maximum number of rules extracted from indi-
759vidual tree visualizations’ CFG, defined as m (35 in
760GoTreeScape). The second dimension indicates a padding
761rule (Nothing!None) and the deduplicated rules extracted
762from all tree visualizations’ CFG, and its length is defined
763as n (60 in GoTreeScape). The GVAE model’s structure is
764then refined based on the above tree visualization features,
765and a weighted reconstruction loss is introduced.

Lr ¼ 1

n

Xn

i¼1
WT 	 k pfðquðxiÞÞ � xiÞ

� ��2
2
; (4)

767767

768where xi 2 Rn
m is the ith parsed tree in the generated
769training visualization set. Each rule is represented as a n
 1
770one-hot embedding and pf is an RNN decoder based on a
771GRU. Considering the repetitive and translationally invari-
772ant property of the input CFG strings, qu is designed as a
7731D-CNN encoder, while W is an n
 1 normalized weight
774vector, andWi denotes the heuristic weight of the ith design
775feature given the design feature insights discussed in Sec-
776tion 4.2.2. The weights for generating the design space over-
777view in Fig. 5 are 10000 for the coordinate system-related
778design features, 100 for the layout-related design features,
779and 1 for the visual element-related design features. With
780the help of the prior weight vector, the domain expertise
781concerning the importance of the design features can be pre-
782served into the embeddings of the latent space. To enable
783users to explore and navigate the design space, the embed-
784ding results must be visualized in two-dimensional space.
785There are several ways this can be done. The first option is
786to learn a 20-dimensional latent space with the GVAEmodel
787and then project the embeddings in two-dimensional space
788using dimension reduction techniques. The other alterna-
789tive is to learn a two-dimensional latent space directly, but
790this would have a lower accuracy, as shown in Table 1.
791Fig. 5 shows the overview of tree visualization design
792space based on different methods. The first three columns
793are the projection results of the 20-dimensional latent vec-
794tors using the MDS [53], UMAP [55], and t-SNE [56] dimen-
795sion reduction techniques. In terms of the parameters of the

Fig. 4. The input to the encoder-decoder network transforms the rules
into one-hot feature vectors. Nall indicates the number of rules extracted
from the CFG of all tree visualizations. Nmax indicates the maximum
number of rules extracted from each CFG tree visualization.

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

796 UMAP technique, we set the n_neighbors (the number of
797 neighbors) to 50 and themin_dist to 0.5. For t-SNE’s parame-
798 ters, we set the perplexity to 50. The fourth column shows the
799 visualization results of the two-dimensional embeddings.
800 The second row and third row in Fig. 5 illustrate the tree
801 visualizationswith the Cartesian coordinate system and rect-
802 angular visual elements, respectively. The results show that
803 the projection results with MDS and UMAP using a 20-
804 dimensional latent space and a two-dimensional latent space
805 (the first, second, and fourth columns) can better preserve
806 the local feature characteristics. For example, most tree visu-
807 alizations in the Cartesian coordinate system or with rectan-
808 gular visual elements are adjacent in the landscape.
809 However, the projection results for t-SNE (the third column)
810 are not, because t-SNE performs much worse at preserving
811 the global structure [59]. To evaluate the quality of the
812 dimensionality reduction, we use a Jaccard index [60], which
813 measures the dissimilarity between sample sets. First, we
814 performed hierarchical clustering for tree visualizations in
815 the landscape, with each cluster in the hierarchical clustering
816 results (H) being denoted as ci. Second, we extracted multi-
817 ple tree visualization lists (denoted as lk) by filtering some
818 chosen design features (e.g., the Cartesian coordinate system
819 and the rectangular visual elements). Then, the maximum
820 Jaccard index for all clusters in the hierarchical clustering
821 results is computed for each tree visualization list.

Jk ¼ max
i¼1;...;n

jlk \ cij
jlk [cij; c1; c2; . . . cn 2 H (5)

823823

824 Table 2 presents the results of 11 relatively important design
825 features related to visual elements, the coordinate system

826and the layout. The full table can be found in the supple-
827mental material, available online. From the results, we can
828see that the MDS, UMAP, and two-dimensional embedding
829results have larger values. Considering the accuracy of the
830GVAE model (Table 1) and the non-deterministic character-
831istic of UMAP techniques, GoTreeScape finally employs
832MDS projection method to compute the overview of tree
833visualization design space.

8344.2.5 Landscape Visual Guidance

835For users to understand where they are situated in the con-
836structed landscape, and to be able to decide on where to
837explore next, they need visual guidance. One such indicator
838provide in GoTreeScape is density-based contours, which
839showusers the distributions of tree visualizations. The second
840is the representative tree visualizations across the landscape,
841which help users to understand whether optional tree visual-
842izations within a certain range will meet their requirements.
843The third is the boundaries between tree visualization clus-
844ters, making the top-level structure visually distinctive. From
845these, users can decide whether to continue exploring at a
846finer granularity. Given that the above landscape construction

Fig. 5. Comparison of the projection results. Vertically, each of the four columns refer to the projection results derived from different techniques. The
first three columns reflect 20-dimensional latent vectors, as computed by a grammar-based auto-encoder and projected them to 2D space using
MDS, UMAP and t-SNE, respectively. The fourth column reflects 2-dimensional latent vectors. Horizontally, the projection results in the first row show
the overview of tree visualization design space implied by GoTree. The second row highlights tree visualizations in the Cartesian coordinate system
in red, and the third row highlights tree visualizations with rectangular visual element in orange.

TABLE 1
Comparison of GVAE Autoencoder Accuracy

GVAE latent dimension 2 20 100

Accuracy 0.619 0.904 0.9292

TABLE 2
Comparison of Dimensionality Reduction Techniques

design
features

Latent(20)
MDS

Latent(20)
UMAP

Latent(20)
t-SNE

Latent(2)

cartesian 0.89 0.78 0.50 0.91
polar 0.57 0.49 0.48 0.92
rectangle 0.51 0.44 0.41 0.64
circle 0.68 0.49 0.26 0.32
triangle 0.28 0.22 0.13 0.29
ellipse 0.22 0.15 0.07 0.23
y: include 0.23 0.15 0.16 0.17
y: juxtapose 0.43 0.40 0.26 0.49
x: within 0.31 0.30 0.28 0.34
x: align 0.33 0.33 0.24 0.47
x: flatten 0.44 0.40 0.29 0.48

LI ANDYUAN: GOTREESCAPE: NAVIGATE AND EXPLORE THE TREE VISUALIZATION DESIGN SPACE 9

847 method is designed to keep neighboring items relatively simi-
848 lar to the user’s perception, it becomes possible to only show
849 representative landmarks instead of each tree visualization in
850 detail. To show these landmarks at different levels of zoom,
851 hierarchical clustering is performed on the collection of tree
852 visualizations and representative items from the clusters are
853 computed at different clustering levels. Furthermore, GoTree-
854 Scape computes the cluster boundaries based on clustering
855 centers using a Voronoi diagram [61]. Fig. 6 presents the land-
856 scape with the above three visual guides. According to Cen-
857 eda’s [62] conceptual guidance framework, our visual
858 guidances orient users towards regions that are worthwhile
859 zooming into. This addresses the knowledge gaps pertaining
860 to the target being unknown.

861 Algorithm 1. Landmark Selection Algorithm

862 Require:
863 - T indicates a tree visualization collection.
864 - F indicates the design feature list,which consists of tree visu-
865 alization design features and each feature is denoted as fi.
866 - W indicates the design feature weight list, which consists
867 of the corresponding weight wi of each design feature fi.
868 - n indicate the amount number of the selected landmarks.
869 Ensure: - The selected landmark list L of T .
870 1: construct design feature hierarchyH based on F , each node
871 hi ofH contains a design feature fi. hr denotes the root ofH.
872 2: reorganize design feature hierarchyH according toW .
873 3: for t 2 T do
874 4: Count_Feature(hr, t) "traverseH and count for each t
875 5: end for
876 6: for hi 2 Bottom_Up_Traversal(H) do
877 7: Compute_Representative(hi, n)
878 8: end for
879 9: L hr.R[n] "R[n] of hr is the selected landmarks
880 10: function Compute_Representativehi, n
881 11: Sr indicates a selected representative tree. Sr½i�½j� indicates
882 selected results from the first i children of hi.
883 12: Si indicates the importance of corresponding
884 representative trees in Sr.
885 13: for i 2 ð0; hi:children.length) do
886 14: for j 2 ð0; nþ 1Þ do
887 15: k�=argmax8k2ð0;jÞ Si½i-1][j-k]
888 16: + hi:children[i].I[k] +

Pj
l¼j�k

w
l
 hi:count

889 17: Si½i�½j� = Si½i-1][j-k�] + hi:children[i].I[k
�]

890 18: +
Pj

l¼j�k�
w
l
 hi:count

891 19: Sr½i�½j� = Sr½i-1][j-k�] + hi:children[i].R[k
�]

892 20: end for
893 21: end for
894 22: hi.I = Sr[-1] "the last row
895 23: hi.R = Si[-1] "the last row
896 24: end Function
897 25: function Count_Featureh, t
898 26: h indicates a node of design feature hierarchyH.
899 27: t indicates a tree visualization declarative grammar.
900 28: if t.Match_Design_Feature(h) then
901 29: h:count+=1
902 30: for hchild 2 h:children do
903 31: Count_Feature(hchild, t)
904 32: end for
905 33: end if
906 34: end Function

907With the help of a declarative grammar, tree visualizations
908can be thought of as a combination of different design feature
909attributes. Therefore, the representative tree visualizations
910selected for display should span as many attributes and com-
911binations of attributes as possible. Furthermore, different
912attribute values will have a different number of associated
913tree visualizations. Taking the CoordinateSystem attribute as
914an example, many fewer tree visualizations are associated
915with the value Cartesian than the value polar. This is because
916the polar coordinate system comes with many fine-grained
917design features, such as PolarAxis and CentralAngle. There-
918fore, if a random samplingmethodwere to be used, themajor-
919ity of the representative tree visualizations selected would be
920based on a polar coordinate system. Additionally, a random
921sampling technique assumes that each design feature has the
922same magnitude of impact on the tree visualization results.
923However, the opposite is true, as explained in Section 4.2.2.
924To fill this gap, we designed a dynamic programming algo-
925rithm (Algorithm1) to select themost representative tree visu-
926alizations. The inputs to the algorithm are the collection of tree
927visualizations (T), the design feature list (F) with the corre-
928sponding weights (W) of the design features, and the number
929of the representative tree visualizations that should be
930selected (n). The algorithm then proceeds through the follow-
931ing four steps: (1) Construct a hierarchical data H for the
932design features based on F , where each node h of the hierar-
933chy contains a design feature and a specific attribute value. (2)
934Reorganize the design feature hierarchy according to W . Ini-
935tially, the design features are arranged in descending order of
936weight from heaviest to lightest. But, to avoid selecting sym-
937metrical tree visualizations for the representative list, the hier-
938archy groups the layout-related design features along the
939horizontal and vertical axis together. The reorganized design
940feature hierarchy is shown in Fig. 7; (3) Compute the number
941of tree visualizations associatedwith different design features
942in the hierarchy, denoted as h:count, which is an important
943factor for computing the importance of the representative
944items. (4) Traverse the hierarchy in a bottom-up manner and
945select the representative tree visualizations. For each node h,
946the dynamic programming algorithm defines the state Si½i�½j]
947as the importance of selecting the j most representative tree
948visualizations from the first i children, while Sr½i�½j] is defined
949as the selected tree visualization results corresponding to
950Si½i�½j]. Selecting one tree visualization as being representative
951of a design feature has a positive correlation with both the

Fig. 6. GoTreeScape with three visual guidance: density-based contour,
representative tree visualizations, and boundaries between tree visuali-
zation clusters.

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

952 weight of the design features and the number of tree visualiza-
953 tions related to that design feature. It also has a negative corre-
954 lation with the number of already-selected representative
955 items l. As a result, the state transfer function is defined as
956 follows:

Si½i�½j� ¼ Si½i� 1�½j� k� þ h:children½i�:I½k� þ
Xj

l¼j�k

w

l

 h:count

(6)
958958

959 The number of design features in F as is defined as f , and
960 the complexity of the algorithm for selecting representative
961 tree visualizations is O(nf2).

962 4.3 Data-Oriented Exploratory Framework

963 The data-oriented exploratory framework helps users to find
964 the appropriate tree visualizations. As explained in Sec-
965 tion 4.2, embeddings are learned from the visualization spec-
966 ifications, independent of any particular hierarchical data.
967 However, various features of the hierarchical data are critical
968 for determining tree visualizations, such as deep/shallow,
969 large/small, balanced/unbalanced, and regular/irregular.
970 As a result, GoTreeScape has to load the targeted hierarchical
971 data and generate all visualization results based on them
972 when presenting the constructed landscape to users. As
973 explained in Section 4.2.5, the landscape provides a large
974 number of tree visualization previews to guide users’ explo-
975 rations. However, too much hierarchical data will impose a
976 huge rendering burden on the system. Additionally, the
977 small display space of the preview panel will not be able to
978 accommodate the visualization results. To solve this prob-
979 lem, GoTreeScape calculates a new derived attribute called
980 the Strahler Number [63] for each node termed the Strahler
981 number. The Strahler number serves as ameasure of a node’s
982 importance according to the topological structure of the hier-
983 archical data. Specifically, the central nodes have large val-
984 ues, while the peripheral nodes have low values. This means
985 the complex hierarchical data at two different abstraction
986 levels. The more simplified one serves as the underlying
987 data of selected landmarks on the landscape. The other one
988 is used as the underlying data for the preview panel. The
989 benefit of this method is that the simplified results retain the
990 key characteristics of the topological structure. Fig. 8 shows
991 the sampling results from the Flare package2 structure with
992 different thresholds. With this sampling method, GoTree-
993 Scape allows the data-oriented exploration by showing the

994simplified hierarchical data visualization results in the pre-
995view panel instead of the original hierarchical data.
996With the help of representative landmarks displayed on
997the landscape, users should be able to continuously make
998design decisions based on the results and accordingly pro-
999vide feedback as input to interactively control the explor-
1000atory design process. The information determined by
1001users about target tree visualizations in different applica-
1002tion scenarios have significant differences. Before explor-
1003ing the design space, users may not have any explicit
1004requirements in mind. Alternately, they may have some
1005loose ideas about design features, such as “the tree visuali-
1006zation should contain circular elements”. Last, they may
1007have a very fixed idea about the tree visualization type,
1008e.g., it should be a “node-link diagram”. To address each
1009user’s various requirements, GoTreeScape includes an
1010exploratory framework that offers users three different
1011exploration modes: top-down, bottom-up and hybrid
1012exploration, as shown in Fig. 10. Note that these three
1013exploration modes do not refer to users’ patterns of zoom-
1014ing-in and out. They are motivated by the sensemaking
1015models [64] from visual query systems. The top-down pro-
1016cess is goal-oriented, where users gradually determine
1017specific design features to concretize the target visualizations
1018in their minds. By contrast, the bottom-up process is data-
1019driven and initiated by a pre-determined tree visualization.
1020Here, the GoTreeScape system “recommends” other tree vis-
1021ualizations as “stimuli” to drive users’ explorations. In par-
1022ticular, these recommendations are not driven by a
1023recommendation system in the data science sense of the
1024word. Users still need to make navigation decisions as they
1025move through a series of tree visualization landmarks in the
1026landscape during exploration.

Fig. 7. The simplification and restructuring of the tree visualization design space. Three hierarchies represent the design space of tree visualizations.
Within the hierarchy, each row refers to one design feature and each link indicates one specific design feature attribute. The left hierarchy displays
the simplification for the whole design space, the middle one shows the remaining design features and the attributes of the design space after simpli-
fication, and the right one arranges the design features according to human perception.

Fig. 8. The sampling results of the Flare package structure. There tare
258 nodes in the hierarchical data. (a) The threshold of the Strahler num-
ber is 3 and, after sampling, 29 nodes remain. (b) The threshold is 8 and
the number of nodes after sampling is 13.2. github.com/d3/d3-hierarchy/blob/main/test/data/flare.json

LI ANDYUAN: GOTREESCAPE: NAVIGATE AND EXPLORE THE TREE VISUALIZATION DESIGN SPACE 11

1027 4.3.1 Top-down Mode

1028 When users do not have any explicit requirements as they
1029 embark on building a tree visualization, their target visual-
1030 izations might exist in any part of the entire landscape. This
1031 exploratory mode is defined as top-down and spans the
1032 entire design space as a starting point. As explained in Sec-
1033 tion 4.2.5, the landscape displays a series of tree visualiza-
1034 tion landmarks. Users can compare these tree visualization
1035 landmarks and then determine the design features they pre-
1036 fer to make their target more concrete. These landmarks dis-
1037 played on the landscape also help users determine the range
1038 of the target tree visualizations, from which users can nar-
1039 row down their scope of exploration. As the scope narrows
1040 and focuses, GoTreeScape displays more fine-grained land-
1041 marks to help users make further design decisions. By
1042 repeating the above exploration process, users eventually
1043 locate their target visualizations on the landscape. The red
1044 arrows in Fig. 10 show the users’ exploration path in the
1045 top-down mode. Top-down exploration mode also supports
1046 the application scenarios where users only have partial
1047 design requirements. The difference is that the starting
1048 point of the exploration process is filtered to only show that
1049 part of the design space that meets the user’s predetermined
1050 requirements instead of the entire landscape.

1051 4.3.2 Bottom-up Mode

1052 Prior to exploratory design, users might already have a pre-
1053 determined tree visualization (denoted as p) that corre-
1054 sponds to a specific item on the landscape. Here, the user’s
1055 goal is exploring whether there might be other tree visual-
1056 izations that are more appropriate than the one in mind. In
1057 this exploration mode, users start with a pre-determined
1058 tree visualization and gradually expand their scope to the
1059 entire landscape. This is a bottom-up exploration process.
1060 The blue arrows in Fig. 10 show the user’s exploration
1061 path in bottom-up mode. The path consists of the two
1062 steps—The first is to locate p on the landscape. Here, the
1063 encoder module outlined in Section 4.2.4 transforms the
1064 user’s input into a vector in the latent space. The item’s posi-
1065 tion on the landscape is computed using the interpolation
1066 method used by Chartseer [20]. The second step is to find a
1067 collection of related tree visualizations from the landscape to
1068 help the user determine whether a tree visualization other
1069 than p better meets their requirements. To this end, GoTree-
1070 Scape displays the top k tree visualizations that aremost sim-
1071 ilar to p but from different clusters. As shown in Fig. 10, users
1072 can adjust the level interactively by selecting related tree vis-
1073 ualizations. Hence, a tree visualization selected from the
1074 lower level could bemore similar to p.

1075 4.3.3 Hybrid Mode

1076 The top-down and bottom-up modes are not isolated.
1077 Rather, users can flexibly switch between two different
1078 modes within their exploratory design process. For example,
1079 one user might start in top-down exploration mode and then
1080 once s/he finds a satisfying tree visualization, switches to
1081 the bottom-up mode to locate similar visualizations in the
1082 landscape at different levels as shown by the green arrows in
1083 Fig. 10). Alternatively, a user might have a tree visualization
1084 in mind and locate it in bottom-upmode. But when they find

1085a tree visualization that does more to satisfy their require-
1086ments, theymay switch to top-down explorationmode to for
1087amore comprehensive exploration of the neighborhood.

10884.4 User Interface and Interaction

1089Guided by all the above considerations, we designed a proto-
1090type system of GoTreeScape. The user interface consists of
1091five interactively coordinated views. The main view is the
1092landscape panel (Fig. 10a), which shows an overview of the
1093tree visualization design space augmented by a small “bird’s-
1094eye” view as an orienting tool. A small rectangle within the
1095overview shows the region viewable within the landscape.
1096Visual guidance on the landscape consists of density-based
1097contours and representative landmarks. After users upload
1098their hierarchical data, GoTreeScape simplifies the data used
1099to display the landmarks and the preview panel. The system
1100further selects some landmarks to display in the correspond-
1101ing visualization results while mapping other landmarks to
1102circles. To help users make decisions, they can click on a land-
1103mark,whichwill show the visualization results in the preview
1104panel (Fig. 10b). The right side of the previewpanel provides a
1105series of operations for the selected tree visualization, includ-
1106ing switching to bottom-up mode based on the visualization,
1107saving the visualization into the gallery, opening the visuali-
1108zation in Tree Illustrator, and checking the related tree visual-
1109izations after fine-tuning the parameters.
1110Users can flexibly adjust the displayed range of the land-
1111scape to suit their requirements. In top-down mode, users
1112can decide the range of subsequent explorations interac-
1113tively according to the landmarks. Additionally, users can
1114zoom in to show the tree visualizations at a finer granularity
1115or zoom out to change the determined design dimension.
1116Our interface also supports users to filter for the exploratory
1117design on the landscape panel. For example, the view will
1118be updated according to the provided input query in
1119Fig. 10e. Bottom-up mode includes a data uploading panel
1120(Fig. 10d) that allows users to upload a tree visualization of
1121GoTree grammar in JSON format. GoTreeScape also pro-
1122vides users with a collection of classic tree visualizations, as
1123shown in Fig. 10c.

11244.5 Implementation

1125GoTreeScape comprises a back-end exploration engine and a
1126front-end user interface, with both being based on a pre-
1127trained auto-encoder. The deep learning model was built
1128using Tensorflow. Dimension reduction is handled by
1129MDS [53], and the hierarchical clustering method used is
1130from the Sklearn Python library. For the parameters of hierar-
1131chical clustering method, we set the distance metric as euclid-
1132ean and the linkage criterion as ward. The front-end user
1133interface uses D3 [9] based on scalable vector graphics (SVG).
1134Specifically, we used the library provided by GoTree [4] to
1135visualize the different trees. The source code for GoTreeScape
1136is available at GitHub3.

11375 CASE STUDIES

1138To demonstrate the effectiveness and usefulness of GoTree-
1139Scape, we invited one visualization researcher (VR) and one

3. https://github.com/bitvis/gotreescape

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

1140 visualization designer (VD), who each had two to four
1141 years’ experience in designing visualizations and visual
1142 analytic systems. They were given a brief introduction on
1143 how to use the prototype system, and talked through the
1144 interface designs and system functionalities. We then asked
1145 them to apply GoTreeScape into their own tree visualization
1146 design scenario. This section presents the workflows from
1147 these two use cases and concludes with the users’ feedback
1148 on the system.

1149 5.1 Case 1: Top-down mode

1150 Our first user, VD, is a visualization designer that does not
1151 have a programming background. He needed to design a
1152 tree visualization to illustrate the reposting process in social
1153 media. A reposting tree is typical example of hierarchical
1154 data, where a node represents a message, and a link repre-
1155 sents a repost. Further, this hierarchical data contained
1156 much information. For example, each node contained infor-
1157 mation about the reposted messages, such as its content and
1158 emotional attitude of the poster, as well as information
1159 about the authors, including their age, gender, and location.
1160 VD’s predetermined requirements for the visualization
1161 were that it should have a circular shape and be able to
1162 encode several attribute values alongside the nodes and links.
1163 This requirement meant he could filter out tree visualizations
1164 based on the Cartesian coordinate system (because they do
1165 not have a circular shape), and any tree visualizations with
1166 hidden nodes (because they cannot encode attribute values
1167 into the visual elements). The first step VD took was to
1168 upload his hierarchical data into the GoTreeScape system.
1169 The data had a depth of 5 and 264 nodes. At this point, the
1170 landscape showed many visualization previews, the under-
1171 lying data of which is the hierarchical data after sampling
1172 based on the computation of Strahler number, as explained
1173 in Section 4.3. VD therefore adjusted the number and specific
1174 items of the tree visualization previews to be displayed on
1175 the landscape. From this, he learned that the tree visualiza-
1176 tions with rectangular nodes had many design variations, so

1177he filtered the landscape to only show tree visualizations
1178with rectangular visual elements (see Fig. 9a). Next, he began
1179to explore the remaining landscape (see Fig. 9b). He identi-
1180fiedmany tree visualizations that meet his requirements, sav-
1181ing each as he came across them to the gallery (see Fig. 9c).
1182He continued to zoom into the landscape from the top level
1183to the bottom level, putting any tree visualizations of particu-
1184lar interest in the center to check for additional related results
1185(see Fig. 9d). Ultimately, VDdecided on a candidate tree visu-
1186alization collection that meets his initial requirements—a cir-
1187cular shape with rectangular nodes. VD perused his selected
1188tree visualizations in the gallery and then switched to Tree
1189Illustrator to fine-tune the results, as shown in the bottom
1190row of Fig. 4.3. GoTreeScape helped VD to determine the par-
1191ent-centric tree visualizations because each message during
1192the reposting process needs to be analyzed as a center for

Fig. 9. The top-down exploration mode in the tree visualization design space. The top row shows the process of finding the candidate tree visualiza-
tions using GoTreeScape. (a) shows the entire landscape of the tree visualization design space. (b) shows the remaining landscape after filtering the
tree visualizations to only show trees with rectangular nodes and using the polar coordinate system. (c) selecting the tree visualizations that meet a
user’s requirements. (d) zooming in on the lower levels of the landscape to select more tree visualizations. The selected tree visualizations are saved
in a gallery. The bottom row shows the process of fine-tuning the selected tree visualizations. (e) and (f) show two fine-tuned visualization results
from the user’s uploading hierarchical data.

Fig. 10. GoTreeScape’s exploratory framework. The framework consists
of three modes, top-down (arrows in red), bottom-up (arrows in blue),
and hybrid (arrows in green). GoTreeScape contains five panels, (a) the
landscape panel, (b) the preview panel, (c) the traditional tree visualiza-
tion panel, (d) the uploading panel, and (e) the filtering panel.

LI ANDYUAN: GOTREESCAPE: NAVIGATE AND EXPLORE THE TREE VISUALIZATION DESIGN SPACE 13

1193 comparison. Figs. 9e and 9f show two circular-shaped tree
1194 visualization results. The difference is that the left one
1195 emphasizes the topology, because the subtrees are the same
1196 size, while the right one emphasizes the attribute values (the
1197 sizes of the subtrees are relative to their width).
1198 Satisfied with his selected tree visualizations and is also
1199 inspired by the visualization results during the exploration
1200 process. VD mentioned that he planned to use the size of
1201 subtrees’ circles to encode the underlying messages’
1202 impacts. Additionally, he would color the circles to encode
1203 positive or negative attitudes and arrange the subtrees in a
1204 clockwise direction according to the time sequence of the
1205 reposting behaviors.

1206 5.2 Case 2: Bottom-up mode

1207 Our second use case shows how GoTreeScape can guide
1208 users to explore novel tree visualization designs. VR men-
1209 tioned that he always designs tree visualizations based on a
1210 collection of alternative options and further explores the
1211 design space according to different application scenarios.
1212 More specifically, when designing visual analytic systems, he
1213 would like a novel tree visualization technique as opposed to
1214 just applying known tree visualizations directly because
1215 existing tree visualizations are often not applicable to a spe-
1216 cific problem at hand. The method therefore places novelty
1217 as a priority. To achieve this task, VR reproduced some of the
1218 existing tree visualizations in treevis.net [8] using GoTree. He
1219 then located and marked them on the GoTreeScape. Fig. 11a
1220 shows the landscape with labels for the existing tree visual-
1221 izations. VR learned the distributions of the existing tree visu-
1222 alizations from the landscape, supporting further exploration
1223 for different scenarios. When looking to discover some novel
1224 tree visualizations, VR explored the upper-left corner of the
1225 landscape where there were with only few existing tree visu-
1226 alizations. The left part of Fig. 11a shows some inspiring tree
1227 visualizations found by VR using GoTreeScape. When look-
1228 ing to improve a tree visualization, VR first located the tree
1229 visualization in GoTreeScape. He then explored other possi-
1230 ble candidates to find novel tree visualizations from the
1231 neighboring area through the bottom-up exploration mode.
1232 These tree visualizations can provide users with much inspi-
1233 ration and improve the efficiency with which they can
1234 explore novel ideas. Fig. 11b shows the landscape when an
1235 icicle plot tree visualization was set as the focus of the bot-
1236 tom-up exploration. Here, VR found some tree visualizations
1237 following an annual-ring shape in the landscape.

1238 5.3 User Feedbacks

1239 After they had used GoTreeScape, we conducted one-to-one
1240 30-minute interviews with the two participants to collect
1241 their feedback. During the interview, the participants were
1242 encouraged to comment and ask questions on any aspect of
1243 GoTreeScape they felt was important. We answered their
1244 questions and made detailed records of their response. VD
1245 commented on the diversity of the tree visualizations
1246 displayed on the landscape: “It is amazing to me that so many
1247 possible tree visualizations exist.”. VR was satisfied that
1248 GoTreeScape could provide so many tree visualization pre-
1249 views directly: “I am impressed that [GoTreeScape] can provide
1250 me with tree visualization results directly so that I can judge the

1251novelty of techniques more efficiently.”Another interesting find-
1252ing was that users could not understand some of the tree vis-
1253ualizations during the exploratory design. For example, VD
1254proposed the questions: “I do not understandwhy [an unreason-
1255able treevis] is a tree visualization.” The tree visualizations that
1256VD did not understand fell into two main categories. The
1257first category did not show the topological structure clearly.
1258The second category contained some novel tree visualiza-
1259tions, and users were not sure about their benefits and appli-
1260cation scenarios. This shows that GoTreeScape exposes users
1261to know some very different tree forms (as well as some
1262unreasonable tree visualizations) that fit the rules for encod-
1263ing their hierarchical information. Even though these trees
1264may not be an efficient form of visualization, it does give
1265users knowledge that there are some stones unturned.

12666 DISCUSSION AND FUTURE WORK

1267The solutions competing with GoTreeScape include treevis.
1268net [8], Tree Illustrator [4], and the phylogenetic tree-based
1269method (PT) [28]. Given these competing solutions differ in
1270the motivation, expressiveness, the availability of tutorials,
1271and system prototypes, which involve many confounding
1272variables, we did not conduct a quantitative user experi-
1273ment to evaluate GoTreeScape. Rather, we compared
1274GoTreeScape with the alternatives in four aspects: the num-
1275ber of tree visualizations; whether they differentiate differ-
1276ent design features; whether an overview is provided; and
1277whether an exploratory design framework is provided. The
1278matrix of answers are shown in Table 3. As can be seen,
1279GoTreeScape is the only method that meets every criteria as

Fig. 11. Top: The distribution of existing tree visualizations in the GoTree-
Scape. The right part shows some inspiring tree visualizations identified
by users. Bottom: The bottom-up exploration process start from the tree
visualization highlighted with the red border. The right part shows some
tree visualizations in annual ring form.

14 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

1280 well as offering a large number of tree visualizations. The
1281 PT method provides an overview based on a phylogenetic
1282 tree and allows users to specify the weights of design fea-
1283 tures dynamically. However, it only contains 35 tree visual-
1284 izations. treevis.net has assembled 333 visualizations (at the
1285 time of this writing) and classifies them according to their
1286 dimensionality, representation, and alignment, but it does
1287 not provide users with an overview or a way to explore
1288 them. Users can select any tree visualizations existing in
1289 GoTreeScape using Tree Illustrator, but Tree Illustrator
1290 does not provide an overview and users need to gradually
1291 determine the design features without viewing the tree
1292 visualization results. As such, Tree Illustrator requires users
1293 to have a clear target in mind before they start building their
1294 visualization. By contrast, GoTreeScape allows users to
1295 directly select the satisfactory tree visualizations, after
1296 which they can continue to make fine-grained adjustments.
1297 Although GoTreeScape employs domain expertise to filter
1298 the generated collection of tree visualizations, someunreason-
1299 able tree visualizations will still appear. These tree visualiza-
1300 tions do place a cognitive burden on the users, hindering
1301 efficient exploration, because these tree visualizations are
1302 especially difficult to understand. However, from our case
1303 studies, we found that these unreasonable trees provided the
1304 users with inspirations during their exploration process.
1305 Hence, we plan to deploy this system online and track this
1306 activity within a community of users in the future. Withmore
1307 feedback, we can better estimate a good distribution of tree
1308 visualizations. Further, as more and more users participate,
1309 such estimations will derive a more intuitive exploratory
1310 design tool, creating a self-reinforcing system that becomes
1311 easier to use. By collecting the users’ exploration paths, we
1312 might also be able to automatically recommend tree visualiza-
1313 tions to users based on other users’ previous decisions.
1314 To construct an overview of tree visualization design
1315 space, we studied the generated tree visualization collection
1316 and extracted insights to guide the loss function and the
1317 model structure design. We assigned various weights to the
1318 design features according to the magnitude of impact that
1319 features would have on tree visualizations. The hypothesis is
1320 that the similarities between tree visualizations in terms of
1321 human cognition related to the impact of the visual channel.
1322 For example, changing the coordinate system always
1323 changes both node shapes and the layout of the tree visual-
1324 izations. Therefore, the coordinate system design feature has
1325 the most significant impact on tree visualizations from the
1326 standpoint of human cognition. However, human cognition
1327 over different design features in the realm of tree visualiza-
1328 tions is still an open question. The design features of some
1329 tree visualizations make a significant differences, but their
1330 visualization results are similar — for example, the triangle
1331 and sectors visual elements in the polar coordinate system.

1332Therefore, when usersmake decisions about further explora-
1333tion based on the GoTreeScape, they need to consider both a
1334single tree visualization and the other tree visualizations in
1335that context. We plan to design comprehensive user experi-
1336ments to explore the relationships between human cognition
1337and the tree visualizations’ design features. Part of this will
1338involve comparing the preferences of different users (e.g.,
1339data scientists and visual designers) when it comes to image-
1340based and grammar-based landscape construction methods.
1341In addition, we will explore the techniques to better realize
1342the consistency between the grammar design and the visuali-
1343zation results. Keeping the efficiency of computing a layout
1344in mind, we intend to use a data-independent techniques.
1345Additionally, GoTreeScapemakes the data-oriented explora-
1346tion of the design space possible by allowing users to upload
1347their hierarchical data from which all tree visualization
1348results are generated. It would therefore be interesting to
1349explore a data-dependent landscape construction method.
1350We also plan to improve the constructed landscape in terms
1351of the machine learning models. For example, we may be
1352able to design the model’s structure in a way that preserves
1353the hierarchy of the design features better.
1354GoTreeScape is not targeted at the whole process of tree
1355visualization design, such as the domain situation and data/
1356task abstraction in the nested model by Munzner [7]. It only
1357focuses on the step of exploring the design space so as to find
1358a suitable tree visualization when users are not clear about
1359their targeted visualizations or only have partial design fea-
1360tures in mind. More specifically, GoTreeScape helps users
1361understand the tree visualization design space. It helps them
1362expand their known space and their consideration space.
1363GoTreeScape uses the metaphor of contour-based map to
1364present the tree visualization design space, where the con-
1365tours of the landscape indicate the distribution of visualiza-
1366tions. In the future, we plan to explore the other map
1367metaphors for design space visualizations. For example, a
1368grid-basedmetaphor [65]might presentmore explicit bound-
1369aries between different clusters and avoids the overlapping
1370between representative landmarks on the landscape. In addi-
1371tion, it would also be interesting to conduct user experiments
1372to compare the effectiveness of different map metaphors for
1373presenting visualization design spaces. Lastly, the methods
1374proposed in this work could be modified for use as a way to
1375explore the design space of other visualization subcategories
1376with a declarative grammar, for example, ATOM [3] (for unit
1377visualizations), multiclass density maps [5], and so on. In
1378the future, we plan to use the techniques in GoTreeScape
1379for other visualizations. With the increasing number of
1380declarative grammars proposed in visualization research
1381communities, it may also be worthwhile designing a general
1382framework for visualization design space exploration based
1383on declarative grammars.

TABLE 3
Comparison of Design Space Exploration Techniques

Techniques Treevis.net Phylogenetic-tree-based method Tree Illustrator GoTreeScape

Number of tree visualizations 333 35 countless 62340
Design feature differentiation No Yes No Yes
Show overview No Yes No Yes
Provide exploratory framework No Yes No Yes

LI ANDYUAN: GOTREESCAPE: NAVIGATE AND EXPLORE THE TREE VISUALIZATION DESIGN SPACE 15

1384 7 CONCLUSION

1385 In this paper, we presented GoTreeScape, a system that helps
1386 users to navigate and explore the tree visualization design
1387 space implied by a fine-grained declarative grammar.
1388 GoTreeScape comprises three parts: visualization set genera-
1389 tion, landscape construction, and an exploration framework.
1390 An encoder-decoder architecture is used to project tree visu-
1391 alizations into a two-dimensional landscape. We employ
1392 domain expertise to simplify the visualization set and guide
1393 the model design. To address user’s varying requirements
1394 and scenarios, GoTreeScape provides an exploration frame-
1395 work with top-down, bottom-up, and hybrid modes within
1396 GoTreeScape. We applied GoTreeScape to several tree visu-
1397 alization design scenarios within two case studies to demon-
1398 strate its usability. The results show that GoTreeScape can
1399 expand the diversity of constructed tree visualizations.

1400 ACKNOWLEDGMENTS

1401 The authors thank the anonymous reviewers for their help-
1402 ful comments and valuable feedback.

1403 REFERENCES

1404 [1] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer,
1405 “Vega-Lite: A grammar of interactive graphics,” IEEE Trans. Vis.
1406 Comput. Graph., vol. 23, no. 1, pp. 341–350, Jan. 2017.
1407 [2] A. Satyanarayan and J. Heer, “Lyra: An interactive visualization
1408 design environment,” Comput. Graph. Forum, vol. 33, no. 3,
1409 pp. 351–360, 2014.
1410 [3] D. Park, S. M. Drucker, R. Fernandez, and N. Elmqvist, “Atom: A
1411 grammar for unit visualizations,” IEEE Trans. Vis. Comput. Graph.,
1412 vol. 24, no. 12, pp. 3032–3043, Dec. 2018.
1413 [4] G. Li, M. Tian, Q. Xu, M. J. McGuffin, and X. Yuan, “GoTree: A
1414 grammar of tree visualizations,” in Proc. ACM Conf. Hum. Factors
1415 Comput. Syst., 2020, pp. 1–13.
1416 [5] J. Jo, F. Vernier, P. Dragicevic, and J. Fekete, “A declarative ren-
1417 dering model for multiclass density maps,” IEEE Trans. Vis. Com-
1418 put. Graph., vol. 25, no. 1, pp. 470–480, Jan. 2019.
1419 [6] L. Wilkinson, The Grammar of Graph.. Berlin, Germany: Springer,
1420 2005.
1421 [7] T. Munzner, Visualization Analysis and Design. Boca Raton, FL,
1422 USA: CRC Press, 2014.
1423 [8] H. Schulz, “Treevis.net: A tree visualization reference,” IEEE Com-
1424 put. Graph. Appl., vol. 31, no. 6, pp. 11–15, Nov.-Dec. 2011.
1425 [9] M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-driven doc-
1426 uments,” IEEE Trans. Vis. Comput. Graph., vol. 17, no. 12,
1427 pp. 2301–2309, Dec. 2011.
1428 [10] G. Li, M. Tian, Q. Xu, M. J. McGuffin, and X. Yuan, “Tree Illustrator:
1429 Interactive construction of tree visualizations,” in Proc. Extended
1430 Abstacts ACMConf. Hum. Factors Comput. Syst., 2020, pp. 1–4.
1431 [11] H. Schulz, Z. Akbar, and F. Maurer, “A generative layout approach
1432 for rooted tree drawings,” in Proc. IEEE Pacific Visualization Symp.,
1433 2013, pp. 225–232.
1434 [12] J. O. Talton, D. Gibson, L. Yang, P. Hanrahan, and V. Koltun,
1435 “Exploratory modeling with collaborative design spaces,” ACM
1436 Trans. Graph., vol. 28, no. 5, pp. 1–10, Dec. 2009.
1437 [13] T. J. Jankun-Kelly and K.-L. Ma, “A spreadsheet interface for
1438 visualization exploration,” in Proc. IEEE Visualization, 2000,
1439 pp. 69–76.
1440 [14] J. Marks et al., “Design galleries: A general approach to setting
1441 parameters for computer graphics and animation,” in Proc. Conf.
1442 Comput. Graph. Interactive Techn., 1997, pp. 389–400.
1443 [15] T. J. Jankun-Kelly and Kwan-LiuMa, “Visualization exploration
1444 and encapsulation via a spreadsheet-like interface,” IEEE Trans.
1445 Vis. Comput. Graph., vol. 7, no. 3, pp. 275–287, Mar. 2001.
1446 [16] E.H.Chi, P. Barry, J. Riedl, and J. Konstan, “A spreadsheet approach
1447 to information visualization,” in Proc. VIZ: Visualization Conf. Inf.
1448 Visualization Symp. Parallel Rendering Symp., 1997, pp. 17–24.

1449[17] M. Beham,W. Herzner, M. E. Gr€oller, and J. Kehrer, “Cupid: Clus-
1450ter-based exploration of geometry generators with parallel coordi-
1451nates and radial trees,” IEEE Trans. Vis. Comput. Graph., vol. 20,
1452no. 12, pp. 1693–1702, Dec. 2014.
1453[18] K. Wongsuphasawat et al., “Voyager 2: Augmenting visual analy-
1454sis with partial view specifications,” in Proc. ACM Conf. Hum. Fac-
1455tors Comput. Syst., 2017, pp. 2648–2659.
1456[19] K. Wongsuphasawat, D. Moritz, A. Anand, J. D. Mackinlay, B.
1457Howe, and J. Heer, “Voyager: Exploratory analysis via faceted
1458browsing of visualization recommendations,” IEEE Trans. Vis.
1459Comput. Graph., vol. 22, no. 1, pp. 649–658, Jan. 2016.
1460[20] J. Zhao, M. Fan, and M. Feng, “Chartseer: Interactive steering
1461exploratory visual analysis withmachine intelligence,” IEEE Trans.
1462Vis. Comput. Graph., vol. 28, no. 3, pp. 1500–1513,Mar. 2021.
1463[21] S. Xu, C. Bryan, J. K. Li, J. Zhao, and K. Ma, “Chart constellations:
1464Effective chart summarization for collaborative and multi-user
1465analyses,” Comput. Graph. Forum, vol. 37, no. 3, pp. 75–86, 2018.
1466[22] B. Kerr, “THREAD ARCS: An email thread visualization,” in Proc.
1467IEEE Symp. Informat. Visualization, 2003, pp. 211–218.
1468[23] T. Munzner, F. Guimbreti�ere, S. Tasiran, L. Zhang, and Y. Zhou,
1469“TreeJuxtaposer: Scalable tree comparison using focus+context
1470with guaranteed visibility,” ACM Trans. Graph., vol. 22, no. 3,
1471pp. 453–462, Mar. 2003.
1472[24] F. Block, M. S. Horn, B. C. Phillips, J. Diamond, E. M. Evans, and
1473C. Shen, “The DeepTree exhibit: Visualizing the tree of life to facil-
1474itate informal learning,” IEEE Trans. Vis. Comput. Graph., vol. 18,
1475no. 12, pp. 2789–2798, Dec. 2012.
1476[25] B. Johnson and B. Shneiderman, “Tree maps: A space-filling
1477approach to the visualization of hierarchical information
1478structures,” in Proc. IEEE Visualization, 1991, pp. 284–291.
1479[26] G. Li et al., “BarcodeTree: Scalable comparison of multiple
1480hierarchies,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 1,
1481pp. 1022–1032, Jan. 2020.
1482[27] S. Zhao, M. J. McGuffin, and M. H. Chignell, “Elastic hierarchies:
1483Combining treemaps and node-link diagrams,” in Proc. IEEE
1484Symp. Inf. Vis., 2005, pp. 57–64.
1485[28] S. Li et al., “Exploring hierarchical visualization designs using
1486phylogenetic trees,” in Visualization and Data Analysis. Bellingham,
1487WA, USA: SPIE, 2015, pp. 68–81.
1488[29] H.-J. Schulz and S. Hadlak, “Preset-based generation and explora-
1489tion of visualization designs,” J. Vis. Lang. Comput., vol. 31, pp. 9–29,
14902015.
1491[30] H. Schulz, S. Hadlak, and H. Schumann, “The design space of
1492implicit hierarchy visualization: A survey,” IEEE Trans. Vis. Com-
1493put. Graph., vol. 17, no. 4, pp. 393–411, Apr. 2011.
1494[31] T. Baudel and B. Broeksema, “Capturing the design space of
1495sequential space-filling layouts,” IEEE Trans. Vis. Comput. Graph.,
1496vol. 18, no. 12, pp. 2593–2602, Dec. 2012.
1497[32] S. MacNeil and N. Elmqvist, “Visualization mosaics for multivari-
1498ate visual exploration,” Comput. Graph. Forum, vol. 32, no. 6,
1499pp. 38–50, 2013.
1500[33] A. Slingsby, J. Dykes, and J. Wood, “Configuring hierarchical lay-
1501outs to address research questions,” IEEE Trans. Vis. Comput.
1502Graph., vol. 15, no. 6, pp. 977–984, Nov./Dec. 2009.
1503[34] S. K. Card and J. Mackinlay, “The structure of the information
1504visualization design space,” in Proc. VIZ: Visualization Conf. Infor-
1505mat. Visualization Symp. Parallel Rendering Symp., 1997, pp. 92–99.
1506[35] W. Javed and N. Elmqvist, “Exploring the design space of com-
1507posite visualization,” in Proc. IEEE Pacific Visualization Symp.,
15082012, pp. 1–8.
1509[36] J. F. Rodrigues, A. J. M. Traina, M. C. F. de Oliveira, and C. Traina,
1510“The spatial-perceptual design space: A new comprehension for
1511data visualization,” Inf. Visualization, vol. 6, no. 4, pp. 261–279,
15122007.
1513[37] M. Tory and T. M€oller, “Rethinking visualization: A high-level
1514taxonomy,” in Proc. IEEE Symp. Inf. Visualization, 2004, pp. 151–158.
1515[38] Y. S. Kristiansen and S. Bruckner, “Visception: An interactive
1516visual framework for nested visualization design,” Comput.
1517Graph., vol. 92, pp. 13–27, 2020.
1518[39] M. Brehmer, B. Lee, B. Bach, N. H. Riche, and T. Munzner,
1519“Timelines revisited: A design space and considerations for
1520expressive storytelling,” IEEE Trans. Vis. Comput. Graph., vol. 23,
1521no. 9, pp. 2151–2164, Sep. 2017.
1522[40] A. Kerren, K. Kucher, Y.-F. Li, and F. Schreiber, “Biovis explorer:
1523A visual guide for biological data visualization techniques,” PLoS
1524One, vol. 12, no. 11, pp. 1–14, 11 2017.

16 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

1525 [41] H. Guo, W. Li, and X. Yuan, “Transfer function map,” in Proc.
1526 IEEE Pacific Visualization Symp., 2014, pp. 262–266.
1527 [42] Kwan-LiuMa, “Image graphs-a novel approach to visual data
1528 exploration,” in Proc. IEEE Visualization, 1999, pp. 81–88.
1529 [43] Y. Wu, A. Xu, M. Chan, H. Qu, and P. Guo, “Palette-style volume
1530 visualization,” in Proc. IEEE Int. Symp. Volume Graph., 2007,
1531 pp. 33–40.
1532 [44] H. Guo, N. Mao, and X. Yuan, “WYSIWYG (what you see is what
1533 you get) volume visualization,” IEEE Trans. Vis. Comput. Graph.,
1534 vol. 17, no. 12, pp. 2106–2114, Dec. 2011.
1535 [45] F. Bolte and S. Bruckner, “Vis-a-Vis: Visual exploration of visuali-
1536 zation source code evolution,” IEEE Trans. Vis. Comput. Graph.,
1537 vol. 27, no. 7, pp. 3153–3167, Jul. 2021.
1538 [46] D. Moritz et al., “Formalizing visualization design knowledge as
1539 constraints: Actionable and extensible models in draco,” IEEE
1540 Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 438–448, Jan. 2019.
1541 [47] J. Hullman, S. M. Drucker, N. H. Riche, B. Lee, D. Fisher, and E.
1542 Adar, “A deeper understanding of sequence in narrative visual-
1543 ization,” IEEE Trans. Vis. Comput. Graph., vol. 19, no. 12, pp. 2406–
1544 2415, Dec. 2013.
1545 [48] Y. Kim, K. Wongsuphasawat, J. Hullman, and J. Heer,
1546 “Graphscape: A model for automated reasoning about visualiza-
1547 tion similarity and sequencing,” in Proc. ACM Conf. Hum. Factors
1548 Comput. Syst., 2017, pp. 2628–2638.
1549 [49] J. Tukey, Exploratory Data Analysis, vol. 2. Noida, UP, India: Pear-
1550 son, 1977.
1551 [50] T. J. Jankun-Kelly, K. Ma, and M. Gertz, “A model and framework
1552 for visualization exploration,” IEEE Trans. Vis. Comput. Graph.,
1553 vol. 13, no. 2, pp. 357–369, Mar./Apr. 2007.
1554 [51] S. I. Fabrikant, D. R. Montello, and D. M. Mark, “The natural land-
1555 scape metaphor in information visualization: The role of common-
1556 sense geomorphology,” J. Amer. Soc. Informat. Sci. Technol., vol. 61,
1557 no. 2, pp. 253–270, 2010.
1558 [52] M. Blades et al., “A cross-cultural study of young children’s mapping
1559 abilities,” Trans. Inst. Brit. Geographers, vol. 23, no. 2, pp. 269–277, 1998.
1560 [53] J. B. Kruskal, Multidimensional Scaling. Newbury Park, CA, USA:
1561 Sage, 1978.
1562 [54] I. T. Jolliffe, Principal Component Analysis and Factor Analysis. Ber-
1563 lin, Germany: Springer, 1986, pp. 115–128.
1564 [55] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform manifold
1565 approximation and projection for dimension reduction,” 2018,
1566 arXiv:1802.03426.
1567 [56] L. Van der Maaten and G. Hinton, “Visualizing data using T-
1568 SNE,” J. Mach. Learn. Res., vol. 9, no. 86, pp. 2579–2605, 2008.
1569 [57] D. P. Kingma and M. Welling, “An introduction to variational
1570 autoencoders,” Found. TrendsMach. Learn., vol. 12, no. 4, pp. 307–392,
1571 2019.
1572 [58] M. J. Kusner, B. Paige, and J. M. Hern�andez-Lobato, “Grammar
1573 variational autoencoder,” in Proc. Int. Conf. Mach. Learn., 2017,
1574 pp. 1945–1954.
1575 [59] D. Kobak and P. Berens, “The art of using t-SNE for single-cell
1576 transcriptomics,”Nat. Commun., vol. 10, no. 1, pp. 1–14, 2019.

1577[60] R. Real and J. M. Vargas, “The probabilistic basis of jaccard’s index
1578of similarity,” Systematic Biol., vol. 45, no. 3, pp. 380–385, 1996.
1579[61] F. Aurenhammer, “Voronoi diagrams—a survey of a fundamental
1580geometric data structure,” ACM Comput. Surv., vol. 23, no. 3,
1581pp. 345–405, 1991.
1582[62] D. Ceneda et al., “Characterizing guidance in visual analytics,”
1583IEEE Trans. Vis. Comput. Graph., vol. 23, no. 1, pp. 111–120,
1584Jan. 2017.
1585[63] D. Auber, “Using strahler numbers for real time visual explora-
1586tion of huge graphs,” J. WSCG Int. Conf. Comput. Vis. Graph.,
1587vol. 10, no. 1/3, pp. 56–69, 2002.
1588[64] D. J.-L. Lee, J. Lee, T. Siddiqui, J. Kim, K. Karahalios, and A. Para-
1589meswaran, “You can’t always sketch what you want: Understand-
1590ing sensemaking in visual query systems,” IEEE Trans. Vis.
1591Comput. Graph., vol. 26, no. 1, pp. 1267–1277, Jan. 2020.
1592[65] W. Meulemans, M. Sondag, and B. Speckmann, “A simple pipe-
1593line for coherent grid maps,” IEEE Trans. Vis. Comput. Graph.,
1594vol. 27, no. 2, pp. 1236–1246, Feb. 2021.

1595Guozheng Li received the PhD degree in com-
1596puter science from the school of EECS, Peking
1597University, in 2021. He is currently an Assistant
1598Professor with the School of Computer Science
1599and Technology, Beijing Institute of Technology,
1600Beijing. His major research interests include
1601information visualization, especially hierarchical
1602data visualization and visualization authoring.

1603Xiaoru Yuan (Senior Member, IEEE) received
1604the BS degree in chemistry and the BA degree in
1605law from Peking University, in 1997 and 1998
1606respectively. In 2005 and 2006, the MS degree in
1607computer engineering and the PhD degree in
1608computer science with the University of Minne-
1609sota, Twin Cities. He is now a professor with
1610Peking University with the Laboratory of Machine
1611Perception (MOE). His primary research interests
1612lie in the field of scientific visualization, informa-
1613tion visualization and visual analytics with an
1614emphasis on large data visualization, high dimensional data visualiza-
1615tion, graph visualization and novel visualization user interface.

1616" For more information on this or any other computing topic,
1617please visit our Digital Library at www.computer.org/csdl.

LI ANDYUAN: GOTREESCAPE: NAVIGATE AND EXPLORE THE TREE VISUALIZATION DESIGN SPACE 17

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

