
 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

GoTree: A Grammar of Tree Visualizations
Guozheng Li1, Min Tian1, Qinmei Xu1, Michael J. McGuffin3, Xiaoru Yuan1,2∗

1Key Laboratory of Machine Perception (Ministry of Education), Peking University
2National Engineering Laboratory for Big Data Analysis and Application, Peking University

3École de technologie supérieure
{guozheng.li, tianmin, mayqin_xu, xiaoru.yuan}@pku.edu.cn, michael.mcguffin@etsmtl.ca

ABSTRACT
We present GoTree, a declarative grammar allowing users to
instantiate tree visualizations by specifying three aspects: vi-
sual elements, layout, and coordinate system. Within the set
of all possible tree visualization techniques, we identify a
subset of techniques that are both “unit-decomposable” and
“axis-decomposable” (terms we define). For tree visualiza-
tions within this subset, GoTree gives the user flexible and
fine-grained control over the parameters of the techniques,
supporting both explicit and implicit tree visualizations. We
developed Tree Illustrator, an interactive authoring tool based
on GoTree grammar. Tree Illustrator allows users to create a
considerable number of tree visualizations, including not only
existing techniques but also undiscovered and hybrid visual-
izations. We demonstrate the expressiveness and generative
power of GoTree with a gallery of examples and conduct a
qualitative study to validate the usability of Tree Illustrator.

Author Keywords
Tree visualization; Declarative grammar; Authoring tool;
Hierarchical data visualization.

CCS Concepts
•Human-centered computing → Visualization toolkits; Vi-
sualization techniques; Information visualization;

INTRODUCTION
Many techniques are available for visualizing hierarchical
tree data, with the most extensive survey [50] covering over
300 techniques. A designer’s choice of technique may de-
pend on several factors, including the size and depth of the
tree, the number of children per node, the number and types
of attributes to be encoded (including text labels), space ef-
ficiency [38], legibility concerns (e.g., should all text labels
have the same orientation or the same size?), whether a lay-
out is familiar to users, how the user can zoom or navigate
within the tree, and whether depths of different nodes should
be easy to compare [5, 32]. Furthermore, the most appropri-
ate technique to use may change during a single user session
*indicates the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
© 2020 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
http://dx.doi.org/10.1145/3313831.3376297

(as tasks change) or from one subtree to another of the same
tree (as a function of local characteristics).

To implement different layout techniques, a first strategy is
to use a software library. One of the most popular is D3 [9],
which supports several layout algorithms and can be extended
with third-party libraries. However, libraries impose an up-
front cost for the designer to learn an API, in addition to
learning a programming language if it is not already known.
Although D3 is widely used, this cost for beginners is non-
trivial. Furthermore, achieving the flexibility necessary to in-
vestigate a larger set of layouts requires the programmer to
write new low-level codes, incurring a substantial time invest-
ment for each new layout. Programmers will often instead
resort to whatever layouts are provided by the available li-
braries. A second strategy is to use a declarative language,
such as Vega [46]. By decoupling the specification from
the execution, declarative grammars allow users to specify
what to show without specifying how to render it. Vega sup-
ports tree layouts by naming an algorithm (e.g., “slicedice”).
Hence, users may only vary the parameters provided by these
pre-defined tree visualizations without fine-grained control.
A third strategy is to use the layouts built into end-user pro-
grams such as Tableau [1], which similarly limit the user to
pre-defined techniques.

We present a new, simple method for non-expert users to
design and construct desired tree visualizations more easily,
which covers a broad set of techniques, but uses a small num-
ber of parameters that can be incrementally modified to en-
able the creative exploration of the set of possible techniques.
This method could be used as a building block of higher-level
tooling for research, education, and prototyping.

Some previous work has identified design dimensions for tree
visualizations [50, 33, 18]. However, the dimensions are not
sufficiently detailed to fully specify and instantiate a layout
just from design choices. Other work has defined a more
detailed set of independent design dimensions, with an algo-
rithm, so that a set of choices fully specifies a layout [57, 6,
53]. However, these works were limited to implicit layouts,
where parent-child relationships between nodes are shown by
relative positioning.

The generative approach of Schulz et al. [51] can be thought
of as a meta-algorithm. Rather than making design choices
about the final output, a user instead specifies the operators to
use at each stage of the layout process. This approach covers
a larger set of possible layouts, but it is not obvious for a user

Paper 170 Page 1

http://dx.doi.org/10.1145/3313831.3376297
mailto:permissions@acm.org
mailto:michael.mcguffin@etsmtl.ca
https://guozheng.li

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

(a) Indented outline (b) Indented pixel tree plot (IPTP) (f) Thread Arc (g) Treemap with Oval (h) Cascaded Treemap

(i) Dendrogram or accordion (j) DeepTree (k) Outside-in Tree Visualiza�on (l) Spiral tree layout (m) Nested Pietree

(c) 1D Treemap

(d) BarcodeTree

(e) Garden Layout

Figure 1. A gallery of 13 visualization examples generated with Tree Illustrator showing the expressiveness of GoTree. These tree visualizations are all
unit-decomposable and axis-decomposable. (a) Indented outline [31], (b) Indented pixel tree plot (IPTP) [11], (c) 1D Treemap [40], (d) BarcodeTree [32],
(e) Similar to Garden Tree Layout [15], (f) ThreadArc [29], (g) Similar to Ellimaps [41], (h) Cascaded Treemap [35], (i) Dendrogram or accordion [39],
(j) DeepTree [7], (k) Outside-in tree visualization [28], (l) Similar to Spiral tree layout [16], (m) Nested Pietree [51]. More examples are at http:
//go-tree.info/gallery.html.

to know how to modify the instructions inside the operators
to explore the set of possible layouts incrementally.

We present a declarative grammar, GoTree (Grammar of Tree
visualizations), for specifying tree visualizations that cover
a large set of possible layouts (both explicit and implicit)
and make it easy for a user to explore this set of layouts
through incremental changes to a simple textual definition.
GoTree allows users to instantiate tree visualizations by spec-
ifying three aspects: visual elements, layout, and coordinate
system. For techniques that are “unit-decomposable” and
“axis-decomposable” (terms we define below), GoTree de-
composes the layout along each axis and gives users flexi-
ble, fine-grained control. We then transform the specifica-
tions into mathematical layout constraints and compute the
resulting visualization using a constraint solver.

We implemented Tree Illustrator, an interactive tree visual-
ization authoring tool based on GoTree. Tree visualization
designs can be exported as images or reusable components in
GoTree’s JavaScript Object Notation (JSON) format, which
can be used to visualize other hierarchical data.

We validate our work in two ways. First, we demonstrate
GoTree’s expressiveness with a gallery of examples (Figure 1
and our website), including previously undiscovered and hy-
brid techniques. Secondly, we validate the usability of Tree
Illustrator through a usability test. Results show that Tree Il-
lustrator allows users without a programming background to
create tree visualizations efficiently.

Our contributions are (1) GoTree, a declarative grammar that
covers a wide range of tree visualizations in a flexible and
fine-grained manner; (2) Tree Illustrator, an interactive au-
thoring tool based on GoTree, allowing users to create and

explore tree visualizations, that was evaluated in a usability
test.

RELATED WORK
Given the availability of previous surveys [50, 53], we only
briefly introduce some conventional techniques and mainly
discuss existing tree visualization frameworks. We then re-
view related work on visualization grammars.

Tree Visualization
Tree visualizations are divided into explicit and implicit tech-
niques according to the visual representations of parent-child
relations. Explicit techniques show relationships as (polygo-
nal) line segments or curves, such as in a hierarchical clus-
tering tree. Implicit techniques show the same relationships
using either adjacency, such as in icicle plots [31], or inclu-
sion, such as in Treemaps [56]. Hybrid techniques [62] mix
two or more approaches to combine their advantages.

In response to the many tree visualization techniques avail-
able, researchers have attempted to understand their design
space. Treevis.net [50] classifies over 300 techniques along
three dimensions: edge representation (explicit, implicit, hy-
brid), dimensionality (2D, 3D, hybrid), and node alignment
(radial, axis-parallel, free). Li et al. [33] propose 12 design
dimensions based on the items in treevis.net to understand
tree visualizations from an evolutionary perspective. These
works classify tree visualizations without seeking to gener-
ate them. Methods for generating visualizations based on a
design-space require a layout procedure that takes design de-
cisions as input, but the design dimensions of the above works
are either not fine-grained enough or not independent, and in-
appropriate for an automatic procedure.

While it is difficult to capture all possible design choices with
design-space-based methods, it is still possible for subclasses

Paper 170 Page 2

http://go-tree.info/gallery.html
http://go-tree.info/gallery.html
https://treevis.net
https://Treevis.net

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

of all possible tree visualizations. Schulz et al. [53] focused
on implicit tree visualizations, which do not include node-
link diagrams or other techniques with explicitly drawn edges.
Their work divides the design space of implicit tree visual-
izations along four dimensions: dimensionality, node repre-
sentation, edge representation, and layout. By restricting the
scope to implicit techniques, they were able to derive an auto-
matic procedure based on these design dimensions. To reduce
the complexity of the creative procedure exposed to users,
Schulz et al. [52] proposed a preset-based method, which al-
lows users to specify tree visualizations by blending several
existing visual representations (a.k.a., presets) instead of indi-
vidual design choices. The above design-space-based meth-
ods either cannot instantiate a technique from a set of design
choices or only support the creation of implicit or pre-defined
tree visualizations.

In contrast, operator-based generative layout focuses on the
algorithmic aspects of generating tree drawings. Some of the
previous works of this type are limited to implicit tree visual-
izations, including work that uses operators to configure a hi-
erarchical layout to show aspects of multivariate data [57, 36].
Baudel and Broeksema [6] use five dimensions (order, size,
chunk, recurse, phrase) to drive space-filling layouts. Schulz
et al. [51] propose an operator-based generative layout ap-
proach for both implicit and explicit tree drawings. Operators
are placed in a pipeline with six stages: initialization, traver-
sal, preprocess, prelayout, allocation, and postlayout. Their
approach enables a wider range of tree visualizations, but at
the cost of requiring designers to translate their intended vi-
sual design into an algorithmic description.

We compare GoTree with three declarative tree visualization
authoring techniques [53, 51, 6] according to three criteria.

Abstraction level: GoTree affords users fine-grain control by
decomposing layouts into relationships between components
along each axis. Other works encapsulate algorithms in oper-
ators (e.g., Spiral [6], SLICE [51], subdivision [53]). Hence,
in those other works, new layouts can require new operators,
increasing programming effort and hindering extensibility.

Capability: The capabilities of GoTree and existing
works [53, 51, 6] do not have simple superset/subset relations.
Previous work cannot support certain tree visualizations (e.g.,
IPTP [11]) supported by GoTree. However, they also can sup-
port some tree visualizations (e.g., Squarified Treemap [37]),
which cannot be described by GoTree, because they hide al-
gorithm complexity in operators. The scope of GoTree covers
unit-decomposable and axis-decomposable tree layouts, and
its parameters are designed to cover a rich combinatorial set
within that scope rather than just currently known tree visual-
izations. Our gallery demonstrates a range of capabilities. In
contrast, some existing works [53, 6] are restricted to implicit
or rectangular space-filling layouts, and their granularity [53,
6, 51] is limited by the use of pre-defined operators.

Construction difficulty: Existing works [6, 53] abstract the
layout procedures into pipelines, whereas the components of
GoTree can be represented graphically (Figure 3 and 4) and
modified through a direct manipulation GUI (Tree Illustrator).

Our work is more consistent with the mental model because
users do not need to transform the desired tree visualizations
into layout procedures mentally.

Grammars for Visualizations
We distinguish two ways to define a visualization program-
matically. The first is to use imperative languages and
libraries, which support the construction of visualizations
from the beginning, including Prefuse [20], D3 [9], Process-
ing [43], and Protovis [8]. By exposing the construction
pipelines to developers, imperative programming provides
great expressiveness at the cost of complexity and involves
a steep learning curve for users. Imperative programming re-
quires developers to focus more on implementation details
and less on the visual representation. The second way is
to use a declarative language, which is also widely used by
the visualization community [47, 48, 49]. By decoupling
the specification from the execution, declarative visualization
grammars allow users to specify what is shown in visualiza-
tions directly without considering how the tree visualization
is achieved [19].

Currently, many declarative visualization grammars exist
with varying degrees of expressiveness. “The Grammar of
Graphics” (GoG) [61] is one of the first declarative frame-
works for visualization. Building upon GoG, Wickham im-
plemented ggplot2 [60], a widely used R package for visu-
alizations. Drawn from GoG and toolkits, including Proto-
vis [8] and D3 [9], Vega [46] provides basic abstractions for
constructing visualizations and extends the specification to in-
teractive visualizations. Furthermore, Reactive Vega [48] pro-
vides a more comprehensive treatment of interaction design
for data visualization based on event-driven reactive func-
tional programming. To reduce the complexity of declarative
grammar, Satyanarayan et al. [47] proposed Vega-Lite, a high-
level declarative grammar that enables the rapid specification
of interactive visualizations while reducing its expressiveness.
Note that Vega-Lite cannot support the authoring of tree visu-
alizations at the time of this writing.

Besides general-purpose declarative grammars, researchers
have developed declarative approaches to provide fine-
grained control for specific visualization categories or algo-
rithms used in visualizations. In addition to the declara-
tive grammars for tree visualizations introduced in the pre-
vious subsection, Park et al. [42] developed ATOM for unit
visualizations. ATOM divides the space and data recur-
sively until the size and position of every data item are de-
termined. Declarative grammars also exist for multiclass den-
sity maps [26], volume visualizations [13, 55], and high-level
constraints [22].

To our knowledge, a declarative grammar covering a wide
range of tree visualizations does not exist in previous litera-
ture.

TREE VISUALIZATION CLASSIFICATION
Many tree visualization techniques can be naturally imple-
mented as recursive algorithms where the region of space as-
signed to a node or subtree is computed only from local in-
formation (i.e., computed from the parent, siblings, children,

Paper 170 Page 3

 CHI 2020 Paper

21 4

4

6

6

7

7

5

5

2 3

3Node-link Diagram

1

2 3

4 5 6 7

21 4 6 75

2 3
4 5

3

6 7

Icicle Plot

1

2 3

4 5 6 7

Force-directed Tree

1

2 3

4
5 6

7

FlexTree

1 2

3

4

5

6

7

(a) (b)

Figure 2. (a) Examples of unit-decomposable tree visualizations: clas-
sical node-link diagram, icicle plot, and the decomposed TreeUnits. (b)
Examples that are not unit-decomposable: FlexTree, force-directed tree
visualization.

and their assigned regions). This is true for many top-down
and bottom-up recursive approaches.

We call such techniques unit-decomposable. The units that
will be of interest for explaining GoTree are TreeUnits. Each
TreeUnit consists of a node N and the subtrees under N’s chil-
dren. Node N can be thought of as a (local) root node, i.e.,
the root node of the TreeUnit. The set of subtrees under N’s
children we refer to as the subtree group G, and we will use
S to refer to an individual subtree of a child of N. In our work,
the region assigned to each of these components of the Tree-
Unit will always be an axis-aligned rectangle (or, in the case
of polar coordinates, an annulus sector).

Unit-decomposable techniques include the classical node-
link diagram and icicle diagram [31] shown in Figure 2(a).
Examples of non-unit-decomposable techniques include Flex-
Tree [24] and force-directed tree visualization [14] (Fig-
ure 2(b)) because the layout of each node is determined by
more than just local neighborhood.

To layout each TreeUnit, we need to determine the size
(width, height) and position (x, y) of the unit and its con-
tents. Within the category of unit-decomposable techniques,
we further distinguish the subset of axis-decomposable tech-
niques, where the assignment of positions and regions in
the TreeUnit is done independently along each axis. Axis-
decomposable techniques include slice-and-dice treemaps
and icicle diagrams, whereas the following techniques are
unit-decomposable but not axis-decomposable: circle pack-
ing [58], rectangular tesselation [2], squarified treemaps [10],
and bubble treemap [17].

With unit-decomposable, axis-decomposable techniques, we
observed that many techniques could be specified using two
kinds of geometric relationships (Figure 3); this paper focuses
on these tree visualization techniques.

TREEUNIT SPECIFICATION
With GoTree, a TreeUnit is defined in terms of the coordinate
system, visual elements, and layout.

Coordinate System
The coordinate system determines the drawing space of tree
visualizations with two parameters: dimensionality (2D or
3D) and category (Cartesian or Polar). The dimensionality
and category parameters also influence two other aspects: vi-
sual elements and the layout. For example, rectangles in 2D

CHI 2020, April 25–30, 2020, Honolulu, HI, USA

w
it
h
in

in
cl
u
d
e

ju
x
ta
p
o
se

include juxtapose withinx
y

align fla en

a
li

g
n

fl
a

e

n

x
y

root

subtree group

subtree

align

padding

margin

(a) (b)

root - subtree grouptechniques subtree - subtree

1

2 3

4 5 6 7

a
li

g
n

asc margin=0

fla en

center

a
li

g
n

asc margin>0

fla en

center

margin>0

Ju
x
ta

p
o

se

bottom

center

within

1

2 3

4 5 6 7

margin=0

Ju
x
ta

p
o

se

bottom

padding=0

include

(c)

Figure 3. Relationships within one TreeUnit. (a) Relationships between
the TreeUnit’s root and subtree group. (b) Relationships among the sub-
trees within the subtree group. (c) Examples for node-link diagram and
icicle plot.

cartesian space will change to annulus sectors in 2D polar
space. The layout in 2D cartesian space requires users to spec-
ify the relationships along the x and y axes, but 2D polar space
requires specification along the angular and radial axes. In
the polar coordinate system, users can further customize tree
visualizations by specifying the inner radius, central angle,
start angle, and direction of the coordinate system. Note that
the following specifications for mark and layout are assumed
to be in 2D cartesian space. The tree visualization results will
change with the categories of the coordinate system accord-
ingly.

Visual Elements
Tree visualizations usually consist of two types of visual el-
ements: nodes and links. The visual elements sometimes
can be hidden; for example, the dendrogram [39] and Deep-
Tree [7] do not show nodes, and implicit tree visualizations
do not show links. Visual elements are determined by both
shapes and visual styles. Based on the existing surveys of tree
visualizations [50, 53] and further investigation, GoTree pro-
vides users with several shapes for nodes and links as well as
the encoding approach for these visual elements. The shape
of nodes could be a circle, rectangle, triangle, or ellipse. The
shape of links could be a straight line, curved line, arc line,
etc. To further determine the visualization results, users need

Paper 170 Page 4

 CHI 2020 Paper

to specify the visual attributes based on selected shapes, in-
cluding width, height, color, thickness. These visual styles
can be either static or encoded with the attributes of hierarchi-
cal data (e.g., depth, value, height).

Layout
GoTree allows users to define the geometric relationships be-
tween the TreeUnit’s root and subtree group (Figure 3(a)),
as well as between subtrees within the subtree group (Fig-
ure 3(b)) along each axis. There are three kinds of rela-
tionships between root and subtree group (include, juxtapose,
within), and two kinds of relationships between the subtrees
within the subtree group (align, flatten). Note that all the rela-
tionships are specified along each axis separately.

(a) (b) (c) (d)

Figure 4. Parameters to specify geometry. (a) position parameter (left,
right, top, bottom); (b) margin parameter (margin < 0, margin = 0, mar-
gin > 0); (c) padding parameter (padding = 0, padding < 0, padding > 0,
paddingLeft > 0 and paddingRight < 0); (d) alignment parameters (left,
middle, right).

However, the above relationship specifications are insuffi-
cient to determine position and size. For example, the within
parameter along the x-axis only determines that the horizon-
tal geometric region of the root is placed inside the subtree
group. However, the position of the root can be left, middle,
or right relative to the subtree group. Therefore, we introduce
more parameters inspired by CSS, which describe how the
elements of web pages are displayed by graphical browsers.
As shown in Figure 4, the parameters include padding, mar-
gin, position, and alignment. Together with these parameters,
the layout specifications can capture all possible Allen rela-
tions [3] for intervals. Figure 5 introduces the margin and
padding parameters along the x-axis. The values of these two
parameters are relative to the whole TreeUnit or root node.

padding-leftmargin padding-right

Figure 5. The padding and margin parameters along the x-axis.

TreeUnit Specification Framework
Figure 6 shows the declarative language framework of one
TreeUnit, which is consistent with the TreeUnit decomposi-
tion above. The complete specification of GoTree can be
found in the supplemental materials.

TREE VISUALIZATION SPECIFICATION
A TreeUnit only determines the relative positions between
locally proximal components. GoTree allows TreeUnits to
be assembled recursively, either using the same specification
within each TreeUnit or using different specifications for dif-
ferent TreeUnits.

CHI 2020, April 25–30, 2020, Honolulu, HI, USA

TreeUnitTemplate := CoordinateSystem, VisualElement, Layout

Layout := (Root, Subtree){2..3}

Root-x, Root-y := within | juxtapose | include

Subtree-x, Subtree-y := flatten | align

within := alignment include := padding

juxtapose := position, margin

align := alignment flatten := sorting, margin

VisualElement := Link, Node

Link := hidden | straight | orthogonal | arc | curve

Node := hidden | rectangle | triangle | circle | ellipse

Width, Height, Color, Thickness := static | depth | height

 | value | ...

CoordinateSystem := Category, Dimensionality

Category := cartesian | polar Dimensionality := 2d | 3d

Notation “|”: or; “{2..3}”: two to three;

Figure 6. The formal specifications of one TreeUnit template in GoTree.

Tree Visualization Specification Framework
For unit-decomposable tree visualizations, TreeUnits are in-
dependent of nodes outside the TreeUnit. Therefore, users
can specify the TreeUnits within one piece of hierarchical
data as the same or different tree visualizations. As shown
in Figure 8, one single tree visualization specification needs
to determine three parts. The first part locates the root node
of the target TreeUnits, the second part specifies whether to
change all the descendant TreeUnits recursively, and the third
part assigns one GoTree template for the selected TreeUnits.

In particular, for the TreeUnits repeatedly specified, more pre-
cise specifications have a higher priority. The priority of non-
recursive specification is higher than the recursive one, and
the id-based unit specification is higher than the property-
based one, which includes the level, depth, name, and value.
If two specifications have the same priority (e.g., both of them
are property-based specifications but different properties), the
earlier one will have a higher priority.

TreeVisTemplate := TreeVisSpecifiction+

TreeVisSpecifiction := NodeQuery, Recursive, TreeUnitTemplate

NodeQuery := depth%2 == 1 | id == ‘index1’ | ...

Recursive := true | false

Notation “|”: or;“+”: one or more;

Figure 8. The formal specifications of one tree visualization template in
GoTree.

Unit Assembly Approach
TreeUnits are assembled recursively with either a bottom-up
or top-down traversal. This corresponds to assembling the
TreeUnits in Figure 2(a), either right-to-left or left-to-right, re-
spectively. If the user specifies a bottom-up traversal, the size
of the subtrees in each TreeUnit is computed automatically
(child TreeUnits become subtrees within their parent Tree-
Unit). However, with top-down traversal, the user may fur-
ther specify additional options, to make the width and height
of each TreeUnit’s subtrees either “adaptive” (equal to each
other), or computed from node depth, or an attribute value.

Paper 170 Page 5

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

GoTree

3

constraintsDSL (X Axis)

constraints width, x

constraintsDSL (Y Axis)

constraints height, y

Visual Element

rect x 7

Ver cal Layout Result

le
v
e

l

x 1

x 2

Transform

cartesian system

polar system

{ name: A,

{ value: 7,

 children: [

 { name:B,

 {value:4,

 {children: [

 {name: C, value: 2},

 {name: D, value: 2}

]},

 { name: E,

 { value: 3,

 {children:[

 {name: F, value: 2},

 {name: G, value: 1}

]}

]}

User Interac on

{ name: A, value: 7,

 children: [

 { name: B, value: 4,

 { name: E, value: 3}]

}

Hierarchical Data

no. of TreeUnit

Tree Layout

Tree Unit

Tree Layout

Horizontal Layout Result Tree Visualiza on

sunburst

Tree Unit Layout

4 5 6 71

32

2

4 5

3

6 7

Transform

cartesian polar

Tree Layout

"Element": {

 "Node": "rect",

 "Link": "hidden",

 "Color": "depth"

}

2"Y": {

 "Root": {

 "Relation": "juxtapose"},

 "Subtree": {

 "Relation": "align"}},

"X": {

 "Root": {

 "Relation": "include"},

 "Subtree": {

 "Relation": "flatten"}},

"CoordinateSystem": {

 "Category": "polar",

 "Theta": "2PI",

 "RadialAxis": "y-axis",

}

Visual Mapping

link hidden
node

color

1

Figure 7. The computational pipeline of GoTree. The computations start from the original hierarchical data and then decompose into the TreeUnit
array. By specifying the (1) Layout, (2) Element, and (3) Coordinate system, users will obtain the final tree visualizations. In particular, the computational
procedures with green marks indicate the operations, and the computational procedures with orange marks indicate the intermediate results of tree
visualization computation. After generating the tree visualizations, users can interact with the results to explore alternative tree visualizations.

TREE VISUALIZATION LAYOUT COMPUTATION
Our method calculates the tree visualization layouts by first
parsing the GoTree specifications into constraints. For axis-
decomposable tree visualizations, layout-related visual at-
tributes (x, width, and y, height) are independent along each
axis. Therefore, all the parsing results are linear constraints.
Solving the linear constraints will enable the layout of spec-
ified tree visualizations to be obtained. The computational
pipeline is shown in Figure 7.

GoTree Specification Parsing
A TreeUnit (T) contains one root node (N) and one subtree
group (G) with several subtrees (S). For all these components,
the shape of the occupied geometric regions is a rectangle in
the cartesian coordinate system. Parsing the GoTree specifi-
cations is conducted to calculate the size (width, height) and
positions (x, y) of these rectangular regions. We define the oc-
cupied regions of TreeUnit as RT , the root node as RN , subtree
group as RG, and the subtree as RS.

In the following explanation, we only consider the specified
relationships for the x-axis, as the possibilities for y-axis are
the same. The specification for each axis consists of two parts:
(1) the relationships between root node RN and subtree group
RG, and (2) the relationships among subtree RS within subtree
group RG.

Relations between root and subtree group
There are three kinds of relationships between root node RN
and subtree group RG: include, juxtapose, and within. Each
one implies certain constraints. Within means that RN is in-
side RG along an axis. In addition, we introduce the align-
ment parameter to specify the position of RN . Figure 9 shows
that RN is at the center of RG along the x-axis, and Equation 1
gives the corresponding constraints.

width(RN) width(RT)x(RN)+ =
2 2 (1)

width(RS) width(RT)x(RS)+ =
2 2

root

subtree group

TreeUnitalignment

Figure 9. Within relationship between root and subtree group with align-
ment parameter set to middle.

Juxtapose means that RN is adjacent to RG along an axis. We
introduce the position and margin parameters to specify their
positions. Figure 10 shows that RN is on the right side of RG
with distance marginNG along the x-axis, which is defined as
the horizontal distance between RN and RG, and Equation 2
is the corresponding constraint.

width(RN)+ width(RG)+ marginNG = width(RT) (2)

root

subtree groupmargin

TreeUnit

Figure 10. Juxtapose relationship between root and subtree group with
setting position parameter to right.

Include means that RN includes RG along an axis. We in-
troduce the padding parameter. Figure 11 shows that RN in-
cludes RG with distance paddingLeft and paddingRight along
the x axis and Equation 3 gives the corresponding constraints.

width(RN) = width(RT)

width(RN) = paddingLeft+ paddingRight + width(RS)
(3)

Paper 170 Page 6

 CHI 2020 Paper

root

subtree group

TreeUnit

paddingLeft paddingRight

Figure 11. Include relationship between root and subtree group with
setting paddingLeft and paddingRight parameters.

Relations among subtrees
There are two kinds of relationships between subtree RS
within subtree group RG: flatten and align. Flatten indicates
that each RS within RG has one separate space along one
axis, and margin parameter controls their distance. Figure 12
shows that RS is flattened within RG with the margin distance
set between them, and Equation 4 gives the corresponding
constraints.

x(RS1) = x(RG)

x(RSi) = x(RSi−1)+ width(RSi−1)+ marginS, i = 2, . . . ,n− 1

x(RSn)+ width(RSn) = x(RG)+ width(RG)
(4)

subtree subtree subtree
margin margin

Figure 12. Flatten relationship between subtrees with setting the margin
parameter.

Align parameter in the subtrees indicates that all RS share the
same space along one axis, and the alignment parameter con-
trols their accurate positions. Figure 13 shows three subtrees
aligned on the right side within RG, and Equation 5 gives the
corresponding constraints.

width(RG) = max width(RSi−1)i=1,...,n (5)
∀i=1,...,nx(RSi)+ width(RSi) = x(RG)+ width(RG)

alignment

Figure 13. Alignment relationship between subtrees within subtree
group with right alignment.

Constraint Solving
All the parsing results of axis-decomposable tree visualiza-
tions are linear constraints. Therefore, we use a linear solver,
which is fast and guaranteed convergence, to meet the require-
ments of interactive parameter adjustment. For incomplete
tree layout specifications, the linear constraint solver com-
putes the optimal solution of layout attributes with the least-
square method. Many existing algorithms [4, 54, 21] in the
literature can solve linear constraints. Similar to Charticula-
tor [45], the constraints of the GoTree layout specification
involve only a few variables and produce a very sparse ma-
trix. Therefore, we also adopted the Conjugate Gradient algo-
rithm [54], which is efficient for solving sparse linear systems
but only supports equality constraints. More details about the
computational efficiency of solving constraints can be found
in the supplementary material.

CHI 2020, April 25–30, 2020, Honolulu, HI, USA

TREE ILLUSTRATOR
We have designed and implemented a prototype system called
Tree Illustrator to support users in creating tree visualizations
based on GoTree interactively.

Design Principle
Reduce the cognitive burden for constructing the tree vi-
sualizations based on GoTree. As a declarative language,
GoTree decouples the specification (the “what”) from exe-
cution (the “how”) [19], which enables users to focus on
visual encoding decisions instead of implementation details.
Compared with the imperative programming approach, the
specifications of GoTree do not require users to translate
their intended visual design into functional aspects. There-
fore, they are more consistent with the users’ mental model.
Users can write the GoTree JSON file to create tree visualiza-
tions directly. However, this still requires users to remember
GoTree’s parameters and convert the target tree visualizations
into parameters cognitively. To reduce the cognitive burden,
Tree Illustrator uses preview images in Figure 3(a) and (b)
to represent corresponding parameters. With the preview im-
ages, users can choose them directly according to the target
tree visualizations instead of typing in the parameters.

Balance direct manipulation and configuration widgets.
The Direct manipulation interaction (e.g., click to select and
object with a draggable anchor) exists in many visualization
authoring tools, including Data-driven Guides [30] and Char-
ticulator [45]. After determining the relationships between
components, Tree Illustrator supports the direct manipulation
interaction for adjusting some parameters, including the mar-
gin and padding. However, for some parameters, the visual-
ization results after direct manipulation cannot convert back
for obtaining the parameters easily (e.g., different relation-
ships between components). Therefore, we design the con-
figuration panels for these parameters to allow users to adjust
the values directly. Furthermore, to help users associate the
components and related parameters, the widgets will be high-
lighted when selecting the components.

User Interface and Interaction
The user interface of Tree Illustrator consists of Component,
TreeUnit, Template, and Tree canvas panels (Figure 14).

Consistent with the design of GoTree, the component panel
consists of three parts: the layout, visual elements, and co-
ordinate system. Each component in the component panel
uses one preview image to represent the underlying parame-
ters. Users can select the component by clicking on the pre-
view images, which is equivalent to writing the GoTree JSON
file.

Users can create TreeUnits or adjust the parameters of an ex-
isting TreeUnit in the TreeUnit panel, which consists of two
parts. The canvas panel above shows the visualization results
of the simplest hierarchical data as well as the visual repre-
sentations of the parameters (e.g., the pink dashed line indi-
cates the alignment parameter). The configuration panel be-
low shows the parameter widgets of the selected components
in this TreeUnit. Users can adjust the TreeUnit through direct

Paper 170 Page 7

guozhengli

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

a b

c

d

Figure 14. The interface of Tree Illustrator. (a) Tree component panel. (b) TreeUnit panel. (c) Tree visualization template panel. (d) Tree canvas panel.

manipulations in the canvas panel or parameter widgets in the
configuration panel.

After finishing the TreeUnit design, users can save it in the
Template panel, which contains many tree visualization tem-
plates. Each tree visualization template contains one preview
image, and the underlying data of the preview image is the
same as that of the TreeUnit panel. Clicking on one preview
image in the Template panel will add the corresponding Tree-
Unit into the TreeUnit panel and visualize the selected hierar-
chical data in the Tree Canvas panel.

// the first UnitSpecifica�on for the whole tree

{
 "NodeQuery": {
 "depth": "=1",
 },
 "Recursive": true,
 "TreeTemplate": "RadialTree"
}
// the second UnitSpecifica�on for the second level

{
 "NodeQuery": {
 "depth": "=2",
 },
 "Recursive": false,
 "TreeTemplate": "Sunburst"
}

// the first UnitSpecifica�on for the whole tree

{
 "NodeQuery": {
 "depth": "=1",
 },
 "Recursive": true,
 "TreeTemplate": "RadialTree"
}
// the second UnitSpecifica�on for four subtrees

{
 "NodeQuery": {
 "index": "=s2|s3|s4|s5",
 },
 "Recursive": true,
 "TreeTemplate": "Sunburst"
}

{
 "Name": "RadialTree",
 "Layout": {
 "X": {
 "Root": {
 "Relation": "within",
 },
 "Siblings": {
 "Relation": "flatten",
 }
 },
 "Y": {
 "Root": {
 "Relation": "juxtapose"
 },
 "Siblings": {
 "Relation": "align"
 }
 },

}

{
 "Name": "Sunburst",
 "Layout": {
 "X": {
 "Root": {
 "Relation": "include",
 },
 "Siblings": {
 "Relation": "flatten",
 }
 },
 "Y": {
 "Root": {
 "Relation": "juxtapose"
 },
 "Siblings": {
 "Relation": "align"
 }
 },

}

Figure 15. Top row: GoTree templates and visualization results for sun-
burst and radial tree layout. Bottom row: two hybrid tree visualizations,
changing one level of the radial tree to sunburst (left) and changing one
subtree of the radial tree to sunburst (right).

The tree visualization results for the selected or uploaded hi-
erarchical data are shown in the Tree Canvas panel. In this
panel, users can specify the GoTree template for each Tree-
Unit in the target hierarchical data and how to assemble the

TreeUnits as one tree visualization (top-down or bottom-up).
In particular, users can specify the TreeUnit as a different
GoTree template to create hybrid tree visualizations.

Implementation
To leverage the capabilities of the existing visualization li-
braries, GoTree is implemented as an embedded declarative
language [25] within JavaScript. The format of GoTree is
based on JSON (JavaScript Object Notation), a widely used
standard and supported in many programming languages.
Furthermore, JSON is easy to parse and has sufficient expres-
siveness. Tree Illustrator is implemented as an HTML5 ap-
plication and uses technologies, including Vue and NodeJS.
The rendering part of Tree Illustrator utilizes D3 [9] based on
Scalable Vector Graphics (SVG).

EVALUATION
In addition to our gallery of examples showing GoTree’s ex-
pressive power, we also conducted a reproduction test to vali-
date the usability of Tree Illustrator. Because the design of
Tree Illustrator is consistent with, and flows directly from,
GoTree, the evaluation also indirectly validates GoTree.

Visualization Gallery
We created a diverse tree visualization gallery using Tree
Illustrator to demonstrate the expressiveness and generative
power of GoTree. The complete gallery is available on our
companion website, and includes previously known tree visu-
alizations (e.g., Figure 1) as well as hybrids (e.g., Figure 15)
and several novel visualizations. Of the novel visualizations,

Paper 170 Page 8

 CHI 2020 Paper

one of the more interesting ones we named ClockTree (Fig-
ure 16), which maps nodes to circular sectors in a depth-first
traversal order and arranges them counterclockwise. Clock-
Tree does not show parent-child relations explicitly; users
need to scan the nodes sequentially to discern the underlying
topology. However, one benefit of ClockTree is that it can use
the inner space for arcs to show a different set of relationships
between pairs of nodes (Figure 16, right). This is somewhat
like Figure 13b in Holten [23], with the advantage that Clock-
Tree can show arcs between any pair of nodes rather than just
between leaf nodes.

Figure 16. Novel ClockTree visualization created with Tree Illustrator.
Color and node length (along the radial axis) encode node depth. Specifi-
cally, the dark-blue node is the root, the medium-blue nodes are children,
the light-blue nodes are grandchildren, and nodes are arranged around
the circle in depth-first order. Right subfigure: arcs can be added to
show additional relationships between nodes.

Usability Study
To evaluate whether users can understand the design of
GoTree and create tree visualizations using Tree Illustrator,
we conducted a study to ask users to reproduce given tree
visualizations. The procedures of the study follow the evalua-
tion of Data Illustrator [34] and Charticulator [45].

Participants and Apparatus. 21 participants (7 female, 14
male) from five different departments in a university were di-
vided into two groups according to their background. Those
in the first group (2 female, 9 male) have a computer science
(CS) background and have participated in the development of
at least one project. Those in the second group (5 female, 5
male) are from liberal arts and social sciences departments,
with no CS background. Tasks were performed in a quiet
computer lab on a Dell Precision T5500 desktop PC, with an
Intel Xeon Quad-Core processor, 8GB RAM, and an Nvidia
Quadro 2000 graphics card driving two 23-inch LCD 1920 ×
1080 pixel monitors, the left one showing the target tree vi-
sualizations, and the right one showing the user interface of
Tree Illustrator.

Tasks. We prepared four tree visualization reproduction tasks:
Indented pixel tree plot (Figure 1(b)) for Task1, Thread Arc
(Figure 1(f)) for Task2, half sunburst with spacing between
different levels (similar to Figure 14(d)) for Task3, and hy-
brid tree visualization of radial tree and sunburst (Figure 15)
for Task4. These tasks cover all basic concepts of GoTree and
main functionalities of Tree Illustrator: specifying different
relations between the components and setting their parame-
ters; adjusting styles of visual elements; changing parameters
of the polar coordinate system; and constructing hybrid tree

CHI 2020, April 25–30, 2020, Honolulu, HI, USA

visualizations. The underlying hierarchical dataset we used
in the study is the package structure of Flare1.

Procedures. In the beginning, participants are asked to com-
plete a pre-study background questionnaire. Then we provide
a tutorial on GoTree. After the explanation, we asked the
participants to practice decomposing node-link and icicle di-
agrams on paper. This part took around 25 minutes. After
that, we began to introduce the functionalities and operations
of Tree Illustrator. Then we introduced the example hierar-
chical dataset in the experiment and asked the participants to
use Tree Illustrator to generate node-link and icicle diagrams
based on previous decomposition results. This part took ap-
proximately 20 minutes. During these practice tasks, we en-
couraged participants to think aloud and ask questions.

After getting familiar with GoTree and Tree Illustrator, par-
ticipants performed the four tasks described above on their
own. Before each task, we describe the target chart for the par-
ticipants. When participants are ready, they click the “start”
button to begin the task. After finishing the target tree visual-
izations, participants click the “complete” button to finish the
task, and the system will record the time cost automatically.
Participants are encouraged to complete these four tasks in-
dependently and think aloud. We provide participants with
instructions if they get stuck on the functionalities of Tree Il-
lustrator or task descriptions. After completing four tasks, we
invited the participants to play with our system freely, trying
different options, and exploring different tree visualizations.
Participants were asked to fill out a questionnaire about their
experience of learning and using Tree Illustrator. At last, we
interviewed each participant and collected their comments on
both the GoTree and Tree Illustrator. The entire session lasted
around 1.5 hours for each participant.

Results
All participants can reproduce the four target tree visualiza-
tions successfully with a few guidance. The guidance for the
participants is mainly about the correspondence between vi-
sual effect and parameters. For example, “where could I ad-
just the alignment parameters?”(P10 and P14). To address
this issue, we added interactive highlighting between the Pa-
rameter view and TreeUnit Canvas in the TreeUnit panel (Fig-
ure 14(b)). We asked the participants to try Tree Illustrator
further and ask their feedbacks about the revision. All the
participants completed the tasks without help and agreed that
the interaction addresses this issue well.

Figure 17 shows the results of task completion time. We are
interested in whether the participants’ background influences
their learning and experience of GoTree and Tree Illustrator.
From Figure 17, we learned that the completion time of Task1
and Task2 are similar between Group1 and Group2. For
Task3 and Task4, the completion time of Group2 is slightly
larger than Group1. We interviewed the participants further
and found that tree visualizations in the third and fourth tasks
are built in a polar coordinate system. GoTree requires users

1https://github.com/d3/d3-hierarchy/blob/master/test/data/
flare.json

Paper 170 Page 9

https://github.com/d3/d3-hierarchy/blob/master/test/data/flare.json
https://github.com/d3/d3-hierarchy/blob/master/test/data/flare.json

 CHI 2020 Paper

T
im
e
(s
)

TASK1

Group 1 (with CS background) Group 2(without CS backrgound)

500

400

300

200

100

0

TASK2

TASK3

TASK4

Figure 17. Task completion time of the participates with different back-
grounds. Error bars indicate the standard deviations.

to specify the visualizations along the axis, but the specifica-
tions are designed in the cartesian coordinate system. It is
challenging to transforming the relations in the cartesian sys-
tem to the polar system, especially for the participants with-
out a CS (Computer Science) background. Future work could
extend the user interface to display circular sliders, icons, and
previews when the polar system is selected.

Participants rated GoTree and Tree Illustrator on four satis-
faction criteria using a five-point Likert scale. They indicate
that GoTree and Tree Illustrator are easy to learn (GoTree:
µ=4.09, σ=0.94; Tree Illustrator: µ=4.00, σ=1.02), Tree Il-
lustrator is easy to operate (µ=4.18, σ=0.60), and enjoyable
to create tree visualizations (µ=4.45, σ=0.52). During the
interview, several participants commented on the expressive-
ness: “I am impressive that [Tree Illustrator] can help me
create so many different tree visualizations just using drag
and drop.” (P3) and usability “[GoTree] gives me many more
options than D3.... the construction of the hybrid tree visual-
izations is great!” (P6). Such comments are consistent with
previous findings: The decoupling of declarative language
lets users focus on visual encoding decisions instead of im-
plementation details [49].

DISCUSSION AND FUTURE WORK
In contrast with GoTree, the competing solutions differ in the
conceptual framework, expressiveness, availability of tutorial,
and of the prototype system. Trying to compare them empiri-
cally would involve confounding variables — any differences
found could be due to a mix of factors. Therefore, we did not
conduct a comparative user experiment.

As a grammar of unit-decomposable and axis-decomposable
tree visualizations, GoTree is consistent and complete. Re-
garding consistency, the computations of visual attributes
along the axes of different TreeUnits are independent. Thus
GoTree does not violate the basic design principle of unit-
decomposable and axis-decomposable tree visualizations.
GoTree can also prevent “over-specification” of constraints
because users can only specify one parameter for each rela-
tionship along each axis. Regarding completeness, GoTree
is designed to capture all the relative positions (between
parent-child and among siblings) within the tree visualiza-
tions. The parameters are designed to cover all possible Allen
relations [3] rather than covering the currently known tree vi-
sualizations. Our tree visualization gallery is also an indica-
tion of the design space’s completeness.

CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Currently, 237 two-dimensional tree visualizations exist in
the treevis.net gallery. Among these tree visualizations,
GoTree can support around 100 techniques. The unsupported
tree visualization techniques are mainly divided into four cat-
egories: (1) tree visualizations that use the tree or map visual
metaphor, (2) techniques that combine the tree with other vi-
sualizations, (3) techniques that focus on the rendering (e.g.,
shading) or interaction methods instead of the tree layout,
and (4) techniques that improve the tree visualization results
based on the existing tree visualization layout. For example,
Squarified Treemap [10] improves the aspect ratio of nodes in
the slice-dice-treemap [27], the Reingold-Tilford layout [44]
improves the compactness of the tree layout proposed by
Wetherell & Shannon [12].

The specification of GoTree does not only consider the inter-
actions of tree visualizations. The created tree visualizations
only provide some default interactions, including hovering on
one node to show the information tooltip and clicking on one
node to select it. Though important, we leave the specifica-
tion of related interaction techniques (e.g., collapsing or ex-
panding) to future work.

GoTree only allows users to specify the visual elements as
four basic shapes: circle, rectangle, triangle, and ellipse. To
improve its expressiveness, Tree Illustrator will support users
in creating more intuitive node element designs by drawing
arbitrary polylines as data-driven guides [30] or uploading the
image to create infographics with InfoNice [59].

GoTree exposes a large design space of tree visualizations.
For future work, we would also like to explore undiscovered
novel tree visualizations automatically based on GoTree. Rec-
ommending the most appropriate tree visualizations for users
automatically according to the underlying hierarchical data
and tasks is also a direction that warrants further investiga-
tion.

CONCLUSION
We present GoTree, a declarative grammar for creating a wide
range of tree visualizations by specifying three aspects: vi-
sual elements, coordinate system, and layout. GoTree decom-
poses the layout further into two kinds of relationships (be-
tween the root and subtree group, among subtrees within the
subtree group) along each axis. With decomposition, GoTree
provides users flexible and fine-grained control for tree visu-
alizations. Based on GoTree, we design and build Tree Il-
lustrator, an interactive tree visualization authoring tool. We
demonstrate the expressiveness of GoTree grammar through
visualization examples. A reproduction study validates the
usability of Tree Illustrator and shows that the system is learn-
able for users without a programming background. Tree Illus-
trator based on GoTree is available at http://go-tree.info.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable com-
ments. This work is supported by NSFC No. 61672055
and the National Key Research and Development Program
of China (2016QY02D0304).

Paper 170 Page 10

http://go-tree.info
https://treevis.net

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

REFERENCES
[1] https://www.tableau.com/.

[2] Narendra Ahuja. 1986. Efficient planar embedding of
trees for VLSI layouts. Computer Vision, Graphics,
and Image Processing 34, 2 (1986), 189–203.

[3] James F. Allen. 1983. Maintaining Knowledge about
Temporal Intervals. Commun. ACM 26, 11 (1983),
832–843.

[4] Greg J. Badros, Alan Borning, and Peter J. Stuckey.
2001. The Cassowary Linear Arithmetic Constraint
Solving Algorithm. ACM Transactions on
Computer-Human Interaction 8, 4 (2001), 267–306.

[5] S. Todd Barlow and Padraic Neville. 2001. A
comparison of 2-D visualizations of hierarchies. In
Proc. IEEE Symp. Information Visualization (InfoVis).
131–138.

[6] Thomas Baudel and Bertjan Broeksema. 2012.
Capturing the Design Space of Sequential Space-Filling
Layouts. IEEE Transactions on Visualization and
Computer Graphics 18, 12 (2012), 2593–2602.

[7] Florian Block, Michael S Horn, Brenda Caldwell
Phillips, Judy Diamond, E Margaret Evans, and Chia
Shen. 2012. The DeepTree exhibit: Visualizing the tree
of life to facilitate informal learning. IEEE
Transactions on Visualization and Computer Graphics
18, 12 (2012), 2789–2798.

[8] Michael Bostock and Jeffrey Heer. 2009. Protovis: A
Graphical Toolkit for Visualization. IEEE Transactions
on Visualization and Computer Graphics 15, 6 (2009),
1121–1128.

[9] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer.
2011. D3 Data-Driven Documents. IEEE Transactions
on Visualization and Computer Graphics 17, 12 (2011),
2301–2309.

[10] Mark Bruls, Kees Huizing, and Jarke J. van Wijk. 2000.
Squarified Treemaps. In Proc. Eurographics and IEEE
TCVG Symposium on Visualization (VisSym). 33–42.

[11] Michael Burch, Michael Raschke, and Daniel
Weiskopf. 2010. Indented Pixel Tree Plots. In Proc. Int.
Symp. Advances in Visual Computing (ISVC). 338–349.

[12] Wetherell Charles and Shannon Alfred. 1979. Tidy
Drawings of Trees. IEEE Transactions on Software
Engineering SE-5, 5 (1979), 514–520.

[13] Hyungsuk Choi, Woohyuk Choi, Tran Minh Quan,
David G. C. Hildebrand, Hanspeter Pfister, and Won-Ki
Jeong. 2014. Vivaldi: A Domain-Specific Language for
Volume Processing and Visualization on Distributed
Heterogeneous Systems. IEEE Transactions on
Visualization and Computer Graphics 20, 12 (2014),
2407–2416.

[14] Ana M. Cuadros, Fernando Vieira Paulovich, Rosane
Minghim, and Guilherme P. Telles. 2007. Point
Placement by Phylogenetic Trees and its Application to
Visual Analysis of Document Collections. In Proc.

IEEE Symp. Visual Analytics Science And Technology
(VAST). 99–106.

[15] Peter Eades. 1992. Drawing free trees. Bulletin of the
Institute of Combinatorics and its Applications 5
(1992), 10–36.

[16] David Eppstein. 2009. Visualizing BFS as a spiral.
(2009).

[17] Jochen Görtler, Christoph Schulz, Daniel Weiskopf,
and Oliver Deussen. 2018. Bubble Treemaps for
Uncertainty Visualization. IEEE Transactions on
Visualization and Computer Graphics 24, 1 (2018),
719–728.

[18] Wang Guanqun, Nakanishi Tsuneo, and Fukuda Akira.
2016. 2-D Layout for Tree Visualization: a survey.
MATEC Web of Conferences 56 (2016), 01007.

[19] Jeffrey Heer and Michael Bostock. 2010. Declarative
Language Design for Interactive Visualization. IEEE
Transactions on Visualization and Computer Graphics
16, 6 (2010), 1149–1156.

[20] Jeffrey Heer, Stuart K. Card, and James A. Landay.
2005. Prefuse: a toolkit for interactive information
visualization. In Proc. ACM Conf. Human Factors in
Computing Systems (CHI). 421–430.

[21] Allan Heydon and Greg Nelson. 1994. The Juno-2
constraint-based drawing editor. Technical Report
131a. Digital Systems Research.

[22] Jane Hoffswell, Alan Borning, and Jeffrey Heer. 2018.
SetCoLa: High-Level Constraints for Graph Layout.
Computer Graphics Forum 37, 3 (2018), 537–548.

[23] Danny Holten. 2006. Hierarchical Edge Bundles:
Visualization of Adjacency Relations in Hierarchical
Data. IEEE Transactions on Visualization and
Computer Graphics 12, 5 (2006), 741–748.

[24] Edwin P Curran Hongzhi Song and Roy Sterritt. 2002.
FlexTree: visualising large quantities of hierarchical
information. In Proc. IEEE International Conference
on Systems, Man and Cybernetics (SMC).

[25] Paul Hudak. 1996. Building Domain-Specific
Embedded Languages. ACM Computing Surveys
(CSUR) 28, 4es (1996), 196.

[26] Jaemin Jo, Frédéric Vernier, Pierre Dragicevic, and
Jean-Daniel Fekete. 2019. A Declarative Rendering
Model for Multiclass Density Maps. IEEE
Transactions on Visualization and Computer Graphics
25, 1 (2019), 470–480.

[27] Brian Johnson and Ben Shneiderman. 1991. Tree-maps:
a space-filling approach to the visualization of
hierarchical information structures. In Proc. IEEE
Visualization (VIS). 284–291.

[28] Thomas A. Keahey, Daniel J. Rope, and Graham J.
Wills. 2018. Generating an Outside-in Hierarchical
Tree Visualization. (2018).

Paper 170 Page 11

https://www.tableau.com

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[29] Bernard Kerr. 2003. Thread Arcs: an email thread
visualization. In Proc. IEEE Symp. Information
Visualization (InfoVis). 211–218.

[30] Nam Wook Kim, Eston Schweickart, Zhicheng Liu,
Mira Dontcheva, Wilmot Li, Jovan Popovic, and
Hanspeter Pfister. 2016. Data-driven guides:
Supporting expressive design for information graphics.
IEEE Transactions on Visualization and Computer
Graphics 23, 1 (2016), 491–500.

[31] Joseph B Kruskal and James M Landwehr. 1983. Icicle
plots: Better displays for hierarchical clustering. The
American Statistician 37, 2 (1983), 162–168.

[32] Guozheng Li, Yu Zhang, Yu Dong, Jie Liang, Jinson
Zhang, Jinsong Wang, Michael J. McGuffin, and
Xiaoru Yuan. 2020. BarcodeTree: Scalable Comparison
of Multiple Hierarchies. IEEE Transactions on
Visualization and Computer Graphics 26, 1 (2020),
1022–1032.

[33] Shaomeng Li, R Jordan Crouser, Garth Griffin, Connor
Gramazio, Hans-Jörg Schulz, Hank Childs, and Remco
Chang. 2015. Exploring hierarchical visualization
designs using phylogenetic trees. In Visualization and
Data Analysis. International Society for Optics and
Photonics, SPIE, 68 – 81.

[34] Zhicheng Liu, John Thompson, Alan Wilson, Mira
Dontcheva, James Delorey, Sam Grigg, Bernard Kerr,
and John Stasko. 2018. Data Illustrator: Augmenting
Vector Design Tools with Lazy Data Binding for
Expressive Visualization Authoring. In Proc. ACM
Conf. Human Factors in Computing Systems (CHI).
ACM, 123:1–123:13.

[35] Hao Lü and James Fogarty. 2008. Cascaded treemaps:
examining the visibility and stability of structure in
treemaps. In Proceedings of graphics interface.
259–266.

[36] S MacNeil and Niklas Elmqvist. 2013. Visualization
mosaics for multivariate visual exploration. Computer
Graphics Forum 32, 6 (2013), 38–50.

[37] Jarke J. van Wijk Mark Bruls, Kees Huizing. 2000.
Squarified Treemaps. In Proc. Eurographics / IEEE
VGTC Conference on Visualization (EuroVis). 33–42.

[38] Michael J. McGuffin and Jean-Marc Robert. 2010.
Quantifying the Space-Efficiency of 2D Graphical
Representations of Trees. Information Visualization 9,
2 (2010), 115–140.

[39] Tamara Munzner, François Guimbretière, Serdar
Tasiran, Li Zhang, and Yunhong Zhou. 2003.
TreeJuxtaposer: Scalable Tree Comparison Using
Focus+Context with Guaranteed Visibility. ACM
Transactions on Graphics 22, 3 (2003), 453–462.

[40] Petra Neumann, Stefan Schlechtweg, and Sheelagh
Carpendale. 2005. ArcTrees: Visualizing Relations in
Hierarchical Data. In Proc. Eurographics / IEEE VGTC
Conference on Visualization (EuroVis). 53–60.

[41] Benoît Otjacques, Monique Noirhomme, Xavier
Gobert, Pierre Collin, and Fernand Feltz. 2007.
Visualizing the activity of a web-based collaborative
platform. In Proc. Int. Conf. Information Visualisation
(IV). IEEE Computer Society, 251–256.

[42] Deokgun Park, Steven M. Drucker, Roland Fernandez,
and Niklas Elmqvist. 2018. Atom: A Grammar for Unit
Visualizations. IEEE Transactions on Visualization and
Computer Graphics 24, 12 (2018), 3032–3043.

[43] Casey Reas and Ben Fry. 2007. Processing: A
Programming Handbook for Visual Designers and
Artists. MIT Press.

[44] Edward M. Reingold and John S. Tilford. 1981. Tidier
Drawings of Trees. IEEE Transactions on Software
Engineering SE-7, 2 (1981), 223–228.

[45] Donghao Ren, Bongshin Lee, and Matthew Brehmer.
2019. Charticulator: Interactive Construction of
Bespoke Chart Layouts. IEEE Transactions on
Visualization and Computer Graphics 25, 1 (2019),
789–799.

[46] Arvind Satyanarayan and Jeffrey Heer. 2014. Lyra: An
Interactive Visualization Design Environment.
Computer Graphics Forum 33, 3 (2014), 351–360.

[47] Arvind Satyanarayan, Dominik Moritz, Kanit
Wongsuphasawat, and Jeffrey Heer. 2017. Vega-Lite: A
Grammar of Interactive Graphics. IEEE Transactions
on Visualization and Computer Graphics 23, 1 (2017),
341–350.

[48] Arvind Satyanarayan, Ryan Russell, Jane Hoffswell,
and Jeffrey Heer. 2016. Reactive Vega: A Streaming
Dataflow Architecture for Declarative Interactive
Visualization. IEEE Transactions on Visualization and
Computer Graphics 22, 1 (2016), 659–668.

[49] Arvind Satyanarayan, Kanit Wongsuphasawat, and
Jeffrey Heer. 2014. Declarative Interaction Design for
Data Visualization. In Proc. ACM Conf. Symposium on
User Interface Software and Technology (UIST). ACM,
669–678.

[50] Hans-Jörg Schulz. 2011. Treevis.net: A Tree
Visualization Reference. IEEE Computer Graphics and
Applications 31, 6 (2011), 11–15.

[51] Hans-Jörg Schulz, Zabedul Akbar, and Frank Maurer.
2013. A generative layout approach for rooted tree
drawings. In Proc. IEEE Pacific Visualization
Symposium (PacificVis). 225–232.

[52] Hans-Jörg Schulz and Steffen Hadlak. 2015.
Preset-based generation and exploration of
visualization designs. Journal of Visual Languages and
Computing 31 (2015), 9–29.

[53] Hans-Jörg Schulz, Steffen Hadlak, and Heidrun
Schumann. 2011. The Design Space of Implicit
Hierarchy Visualization: A Survey. IEEE Transactions
on Visualization and Computer Graphics 17, 4 (2011),
393–411.

Paper 170 Page 12

https://Treevis.net

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[54] Jonathan Richard Shewchuk and others. 1994. An
introduction to the conjugate gradient method without
the agonizing pain. (1994).

[55] Min Shih, Charles Rozhon, and Kwan-Liu Ma. 2019. A
Declarative Grammar of Flexible Volume Visualization
Pipelines. IEEE Transactions on Visualization and
Computer Graphics 25, 1 (2019), 1050–1059.

[56] Ben Shneiderman. 1992. Tree Visualization with
Tree-maps: 2-d Space-filling Approach. ACM
Transactions on Graphics 11, 1 (1992), 92–99.

[57] Aidan Slingsby, Jason Dykes, and Jo Wood. 2009.
Configuring Hierarchical Layouts to Address Research
Questions. IEEE Transactions on Visualization and
Computer Graphics 15, 6 (2009), 977–984.

[58] Weixin Wang, Hui Wang, Guozhong Dai, and Hongan
Wang. 2006. Visualization of Large Hierarchical Data

by Circle Packing. In Proc. ACM Conf. Human Factors
in Computing Systems (CHI). ACM, 517–520.

[59] Yun Wang, Haidong Zhang, He Huang, Xi Chen,
Qiufeng Yin, Zhitao Hou, Dongmei Zhang, Qiong Luo,
and Huamin Qu. 2018. InfoNice: Easy Creation of
Information Graphics. In Proc. ACM Conf. Human
Factors in Computing Systems (CHI). ACM,
335:1–335:12.

[60] Hadley Wickham. 2016. ggplot2: Elegant Graphics for
Data Analysis. Springer.

[61] Leland Wilkinson. 2006. The Grammar of Graphics.
Springer.

[62] Shengdong Zhao, Michael J. McGuffin, and Mark H.
Chignell. 2005. Elastic Hierarchies: Combining
Treemaps and Node-Link Diagrams. In Proc. IEEE
Symp. Information Visualization (InfoVis). 57–64.

Paper 170 Page 13

	Introduction
	Related Work
	Tree Visualization
	Grammars for Visualizations

	Tree Visualization Classification
	TreeUnit Specification
	Coordinate System
	Visual Elements
	Layout
	TreeUnit Specification Framework

	Tree Visualization Specification
	Tree Visualization Specification Framework
	Unit Assembly Approach

	Tree Visualization Layout Computation
	GoTree Specification Parsing
	Relations between root and subtree group
	Relations among subtrees

	Constraint Solving

	Tree Illustrator
	Design Principle
	User Interface and Interaction
	Implementation

	Evaluation
	Visualization Gallery
	Usability Study
	Results

	Discussion and Future Work
	Conclusion
	Acknowledgments
	References

